• 제목/요약/키워드: Powder compaction

검색결과 261건 처리시간 0.031초

분말야금 공정 중 분말 성형압력이 밀도와 치수에 미치는 영향 (The Influence of Powder Compaction Pressure on Density and Dimension of a Powder Metallurgy Product)

  • 조주현;권영삼;정성택;이민철;전만수
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.244-249
    • /
    • 2007
  • The influence of powder compaction pressure on the hydraulic cylinder block fabricated by powder metallurgy is investigated in this study. The cylinder block is compacted with powder under various compaction pressures and then sintered, and its density and dimensions are measured to reveal the relationship of the powder compaction pressure with the product quality. Moreover, finite element analyses of the density distributions are carried out under the same conditions with the experiments and the predicted results are compared with the measured ones.

분말 가압 성형 공정 변수 최적화에 관한 연구 (Study on the Optimization of Powder Compaction Process Parameters)

  • 김정래;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.476-479
    • /
    • 2005
  • In this study, the process parameters in powder compaction are optimized for getting high relative densities. To find optimized parameters, the analytic models of powder compaction are firstly prepared by 2-dimensional rod arrays with random green densities using a quasi-random multi-particle array. Then, using finite element method, the changes in relative densities are analyzed by varying the size of the particle, the amplitude of cyclic compaction, and the coefficient of friction, which influence the relative density in cyclic compactions. After the analytic function of relative density associated process parameters are formulated by aid of the response surface method, the optimal conditions in powder compaction process are found by the grid search method.

  • PDF

냉간 압축 하에서 나노 세라믹 분말의 치밀화 거동 (Densification Behavior of Nanocrystalline Ceramic Powder under Cold Compaction)

  • 이성철;김기태
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1242-1248
    • /
    • 2006
  • Densification behavior of nanocrystalline titania powder was investigated under cold compaction. Experimental data were obtained under triaxial compression with various loading conditions. Lee and Kim proposed the Cap model by developing the parameters involved in the yield function of general Cap model and volumetric strain evolution under cold isostatic pressing. The parameters in the Drucker/Prager Cap model and the proposed model were obtained from experimental data under triaxial compression. Finite element results from the models were compared with experimental data for densification behavior of nanocystalline ceramic powder under cold isostatic pressing and die compaction. The proposed model agreed well with experimental data under cold compaction, but the Drucker/Prager Cap model underestimated at the low density range. Finite element results, also, show the relative density distribution of nanocystalline ceramic powder compacts is severe compared to conventional micron powder compacts with the same averaged relative density.

압축성형공정에 대한 알루미나 성형체 밀도분포의 FE 분석 (FE Analysis of Alumina Green Body Density for Pressure Compaction Process)

  • 임종인;육영진
    • 한국세라믹학회지
    • /
    • 제43권12호
    • /
    • pp.859-864
    • /
    • 2006
  • For the pressure compaction process of the ceramic powder, the green density is very different with both the ceramic body shape and the processing conditions. The density difference cause non-uniform shrinkages and deformations, and make cracks in the sintered ceramics. In this paper, Material properties of the alumina powder mixed with binder and the friction coefficient between the powder and the tool set were determined through the simple compaction experiments: Also the powder flow characteristics were simulated and the green density was analyzed during the powder compaction process with Finite Element Method (FEM). The results show that the density distributions of the green body were improved at the optimized processing condition and both the possibility of the farming crack generation and rho deformation of the sintered Alumina body were reduced.

냉간압축하에서 혼합금속분말의 치밀화 모델 (A Densification Model for Mixed Metal Powder under Cold Coompaction)

  • 조진호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.112-118
    • /
    • 2000
  • Densification behavior of mixed copper and tool steel powder under cold compaction was investigated. By mixing the yield functions proposed by Fleck et al. and by Gurson for pure powder in terms of volume fractions and contact numbers of Cu powder new mixed yield functions were employed for densification of powder composites under cold compaction. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data for densificatiojn of mixed powder under cold isostatic pressing and cold die compaction. finite element calculations by using the yield functions mixed by contact numbers of Cu powder agreed better with experimental data than those by volume fractions of Cu powder.

  • PDF

Core-shell 구조를 지니는 하모닉 분말의 성형거동 분석 (Effect of Core-Shell Structure on Compaction Behavior of Harmonic Powder)

  • 주수현;박효욱;강수영;이언식;강희수;김형섭
    • 한국분말재료학회지
    • /
    • 제22권2호
    • /
    • pp.105-110
    • /
    • 2015
  • In this study, effect of core-shell structure on compaction behavior of harmonic powder is investigated. Harmonic powders are made by electroless plating method on Fe powders. Softer Cu shell encloses harder Fe core, and the average size of Fe core and thickness of Cu shell are $34.3{\mu}m$ and $3.2{\mu}m$, respectively. The powder compaction procedure is processed with pressure of 600 MPa in a cylindrical die. Due to the low strength of Cu shell regions, the harmonic powders show better densification behavior compared with pure Fe powders. Finite element method (FEM) is performed to understand the roll of core-shell structure. Based on stress and strain distributions of FEM results, it is concluded that the early stage of powder compaction of harmonic powders mainly occurs at the shell region. FEM results also well predict porosity of compacted materials.

Fe-Si-Al-Graphite 분말 혼합체의 압축 특성 연구 (Study on the Compaction Properties of Fe-Si-Al-Graphite Powder Mixtures)

  • 정준혁;최진일
    • 한국분말재료학회지
    • /
    • 제27권4호
    • /
    • pp.300-304
    • /
    • 2020
  • In this paper, a durability study is presented to enhance the mechanical properties of an Fe-Si-Al powder-based magnetic core, through the addition of graphite. The compressive properties of Fe-Si-Al-graphite powder mixtures are explored using discrete element method (DEM), and a powder compaction experiment is performed under identical conditions to verify the reliability of the DEM analysis. Important parameters for powder compaction of Fe-Si-Al-graphite powder mixtures are identified. The compressibility of the powders is observed to increase as the amount of graphite mixture increases and as the size of the graphite powders decreases. In addition, the compaction properties of the Fe-Si-Al-graphite powder mixtures are further explored by analyzing the transmissibility of stress between the top and bottom punches as well as the distribution of the compressive force. The application of graphite powders is confirmed to result in improved stress transmission and compressive force distribution, by 24% and 51%, respectively.

냉간압축하에서 혼합 금속분말의 치밀화 거동에 관한 유한요소해석 (A Finite Element Analysis for Densification Behavior of Mixed Metal Powder under Cold Compaction)

  • 조장혁;조진호;김기태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.393-398
    • /
    • 2000
  • Densification behavior of mixed copper and tool steel powder under cold compaction was investigated. By mixing the yield functions originally proposed by Fleck-Gurson for pure powder, a new mixed yield functions In terms of volume fractions and contact numbers of Cu powder were employed in the constitutive models. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data. and with calculated results from the model of Kim et at. for densification of mixed powder under cold isostatic pressing and cold die compaction. Finite element calculations by using the yield functions mixed by contact numbers of Cu powder agreed better with experimental data than those by volume fractions of Cu powder.

  • PDF

Densification Mechanism of Warm Compaction for Iron-based Powder Materials

  • Qu, Shengguan;Li, Yuanyuan;Xia, Wei;Chen, Weiping
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.201-202
    • /
    • 2006
  • An apparatus measuring changes of various forces directly and continuously was developed by a way of direct touch between powders and transmitting force component, which can be used to study forces state of powders during warm compaction. Using the apparatus, warm compaction processes of iron-based powder materials containing different lubricants at different temperatures were studied. Results show that densification of the iron-based powder materials can be divided into four stages, in which powder movement changes from robustness to weakness, while its degree of plastic deformation changes from weakness to robustness.

  • PDF

Densification Behavior of Metal and Ceramic Powder under Cold Compaction

  • Lee, Sung-Chul;Kim, Ki-Tae
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.179-180
    • /
    • 2006
  • Densification behavior of various metal and ceramic powder was investigated under cold compaction. The Cap model was proposed based on the parameters obtained from axial and radial deformation of sintered metal powder compacts under uniaxial compression and volumetric strain evolution. For ceramic powder, the parameters were obtained from deformation of green powder compacts under triaxial compression. The Cap model was implemented into a finite element program (ABAQUS) to compare with experimental data for densification behavior of various metal and ceramic powder under cold compaction.

  • PDF