• Title/Summary/Keyword: Powder alloying process

검색결과 147건 처리시간 0.019초

기계적으로 합금화된 Al-Fe합금의 풀림처리에 따른 기계적 특성 (Mechanical Characteristics of Mechanically Alloyed Al-Fe Alloys accroding to Annealing Process)

  • 서휘성;정석주;구본권
    • 열처리공학회지
    • /
    • 제8권3호
    • /
    • pp.222-228
    • /
    • 1995
  • Mechanical alloying behaviour was investigated after adding 6, 8, 12wt% Fe powder into A1 matrix, respectively, in order to develop Al alloy. And the mechanical characteristics of the alloy which was produced by the above method were studied. The hardness and ultimata tensile strength of the material with different compositions were found to be increased with annealing temperatures and holding times. Intermetallic compound of $Al_3Fe$ and carbide of $Al_4C_3$ phases, which were generated from the different compositions during annealing, were found. It was suggested that enhancement of mechanical properties of Al-Fe alloy system was due to the presence of these preapitates that constrained grain growth and blocked dislocation movement in the alloy system.

  • PDF

분말고속도공구강의 마찰마모특성에 미치는 Co의 영향 (The Effects of Cobait on Wear and Friction Characteristics of PM-HSS)

  • 이한영;백금주;김용진;배종수;홍성현
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제27회 춘계학술대회
    • /
    • pp.108-114
    • /
    • 1998
  • The mechanical characteristics of the high speed steel by powder metallurgy process(PM-HSS) has been reported to improve with several alloying constituents, such as high carbon, vanadium and cobalt. In this paper, sliding wear test has been conducted using a pin-on-disc machine for three PM-HSS which contains 0%, 5% and 12% cobalt respectively, in order to evaluate the effect of cobalt on wear properties of PM-HSS. The results of this study showed that the wear resistance of PM-HSS has been increased by the addition of cobalt on the range of experimental friction velocities. When compared with the effect of addition of cobalt, the wear resistance of PM-HSS with 5% cobalt has been found to be superior to that of PM-HSS with 12% cobalt.

  • PDF

POSCO's Research and Development works on rare earth reduced NdFeB magnets production process

  • Yuh, Junhan
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2013년도 자성 및 자성재료 국제학술대회
    • /
    • pp.90-90
    • /
    • 2013
  • Since discovery, NdFeB permanent magnet has replaced application of the conventional magnets rapidly because of its superior physical and mechanical properties. With increasing consumption of power combined with energy resource depletion, energy efficiency is becoming more and more inportant. According to recent reports, almost almost half of the electric power is consumed by motor, and NdFeB magnets which are the core component of the motor play a key role on improving energy efficiency of the devices. In parallel with finding alternatives energy resources, research works improving energy efficiecy have been conducted world wide. Althogh NdFeB magnets usage have been expanded to various applications, key materials such as Nd and Dy, resouces lean heavily on specific area, China. Magnetic industry revently experienced skyrocketing price fluctuatioin of rare earth at around 2008. Chineses government's regulations worsened the situation and arose a necessity to develop methods to minimize rare earth use. In this presentation, POSCO's recent research works on rare earth reduction is presented including novel powder alloying method using nitrate precursors. Also, future R&D plans for rare earth free magnets is briefly introduced as well.

  • PDF

Ta20Nb20V20W20Ti20 하이엔트로피 합금의 미세조직 및 기계적 특성에 미치는 밀링 시간의 영향 (Effect of Milling Time on the Microstructure and Mechanical Properties of Ta20Nb20V20W20Ti20 High Entropy Alloy)

  • 송다혜;김영겸;이진규
    • 한국분말재료학회지
    • /
    • 제27권1호
    • /
    • pp.52-57
    • /
    • 2020
  • In this study, we report the microstructure and characterization of Ta20Nb20V20W20Ti20 high-entropy alloy powders and sintered samples. The effects of milling time on the microstructure and mechanical properties were investigated in detail. Microstructure and structural characterization were performed by scanning electron microscopy and X-ray diffraction. The mechanical properties of the sintered samples were analyzed through a compressive test at room temperature with a strain rate of 1 × 10-4 s-1. The microstructure of sintered Ta20Nb20V20W20Ti20 high-entropy alloy is composed of a BCC phase and a TiO phase. A better combination of compressive strength and strain was achieved by using prealloyed Ta20Nb20V20W20Ti20 powder with low oxygen content. The results suggest that the oxide formed during the sintering process affects the mechanical properties of Ta20Nb20V20W20Ti20 high-entropy alloys, which are related to the interfacial stability between the BCC matrix and TiO phase.

기계적 합금화법에 의해 제조된 Al+Al3Ti합금 및 Al+10wt.%Ti합금의 고용현상 (Solid Solution Phenomena of Al+Al3Ti Alloy and Al+10wt.%Ti Alloy using Mechanical Alloying Process)

  • 김혜성;이정일;김긍호;금동화;서동수
    • 열처리공학회지
    • /
    • 제9권2호
    • /
    • pp.121-129
    • /
    • 1996
  • The solubility of Ti in Al matrix was determined by X-ray diffraction method on two different mechanical alloying systems, i.e Al+$Al_3Ti$ and Al+Ti alloys. Starting powder compositions of two systems were chosen for final volume fraction of $Al_3Ti$ phase being 25%. The solubility of Ti in ${\alpha}$-Al was estimated by the lattice parameter measurement of Al. For Al+$Al_3Ti$ mixture, it appeared that some of $Al_3Ti$ particles decomposed during milling and maximum solubility of Ti in Al was about 0.99%. The majority of $Al_3Ti$ particles were dispersed uniformly in Al matrix, having approximate size of 100~200 nm. On the other hand, higher Ti solubility of 1.24 wt.% was found in Al+Ti system, with starting composition of Al+10 wt.%Ti. After 15 hours of milling, Ti phase was identified as 20 nm sized particles embedded in Al matrix. The annealing of mechanically alloyed powders from Al+$Al_3Ti$ and Al+10 wt.%Ti systems was followed in the temperature range of 200 to $600^{\circ}C$ to study thermal stability of supersaturated solution of Al(Ti). After annealing, the lattice parameter of Al reverted back to that of pure Al, and the peak intensity ratio of $Al_3Ti$/Al was increased more than the original value before annealing. These results suggest that Ti dissolve into alpha-Al solutions during milling, and by annealing, $Do_{22}-Al_3Ti$ phase forms from Al(Ti) solution.

  • PDF

기계적 합금화법으로 제조된 과포정 Al-Ti 합금에서 Al3Ti 형성에 관한 연구 (Formation of Al3Ti From Mechanically Alloyed Hyper-Peritectic Al-Ti Powder)

  • 김혜성;서동수;김긍호;금동화
    • 열처리공학회지
    • /
    • 제9권1호
    • /
    • pp.1-11
    • /
    • 1996
  • Mechanical alloying is an effective process to finely distribute inert dispersoids in an Al-TM(TM is a transition metal) system. It has been considered that high melting point aluminides are formed by precipitation from supersaturated Al(Ti) powder. This analysis is based on the fact that much higher content of TM than the solubioity can be dissolved in alpha aluminum during the high energy ball milling. Thus, decomposition behavior of Ti in the Al(Ti) was considered very important. But it is confirmed that the higher portion of Ti than Al(Ti) solid solution is existed as nano-sized Ti particles in the MA powders by high energy ball nilling from the XRD spectrum and TEM analysis in this study. Therefore, the role of undissolved TM particles affect the formation of aluminides should be suitably considered. In this study, we present experimental observation on the formation of $Al_3Ti$ fron mechanical alloyed Al-Ti alloys in the hyperperitectic region. This study showed that, in the mechanically alloyed Al-20wt%Ti specimen, intermediate phase of cubic $Al_3Ti$ and tetragonal $Al_{24}Ti_8$ formed at $300{\sim}400^{\circ}C$ and $400{\sim}500^{\circ}C$, respectively, before the MA state reaches to equilibrium at higher temperatures. The formation behavior of $Ll_2-Al_3Ti$ is interpreted by interdiffusion of Al and Ti in solid state based on the fact that large amount of nano-sized Ti particles exist in the milled powder. Present analysis indicated undissolved Ti particles of nanosize should have played an important role initiation the formation of $Al_3Ti$ phase during annealing.

  • PDF

Mechanical Properties of Bulk Amorphous Ti50Cu20Ni20Al10 Fabricated by High-energy Ball Milling and Spark-plasma Sintering

  • Nguyen, H.V.;Kim, J.C.;Kim, J.S.;Kwon, Y.J.;Kwon, Y.S.
    • 한국분말재료학회지
    • /
    • 제16권5호
    • /
    • pp.358-362
    • /
    • 2009
  • Ti$_{50}$Cu$_{20}$Ni$_{20}$Al$_{10}$ quaternary amorphous alloy was prepared by high-energy ball milling process. A complete amorphization was confirmed for the composition of Ti$_{50}$Cu$_{20}$Ni$_{20}$Al$_{10}$ after milling for 30hrs. Differential scanning calorimetry showed a large super-cooled liquid region ($\Delta$T$_x$ = T$_x$ T$_g$, T$_g$ and T$_x$: glass transition and crystallization onset temperatures, respectively) of 80 K. Prepared amorphous powders of Ti$_{50}$Cu$_{20}$Ni$_{20}$Al$_{10}$ were consolidated by spark-plasma sintering. Densification behavior and microstructure changes were investigated. Samples sintered at higher temperature of 713 K had a nearly full density. With increasing the sintering temperature, the compressive strength increased to fracture strength of 756 MPa in the case of sintering at 733 K, which showed a 'transparticle' fracture. The samples sintered at above 693 K showed the elongation maximum above 2%.

An Investigation of the Stability of Y2O3 and Sintering Behavior of Fe-Based ODS Particles Prepared by High Energy Ball Milling

  • Park, Eun-Kwang;Hong, Sung-Mo;Park, Jin-Ju;Lee, Min-Ku;Rhee, Chang-Kyu;Seol, Kyeong-Won
    • 한국분말재료학회지
    • /
    • 제20권4호
    • /
    • pp.275-279
    • /
    • 2013
  • Fe-based oxide dispersion strengthened (ODS) powders were produced by high energy ball milling, followed by spark plasma sintering (SPS) for consolidation. The mixed powders of 84Fe-14Cr-$2Y_2O_3$ (wt%) were mechanically milled for 10 and 90 mins, and then consolidated at different temperatures ($900{\sim}1100^{\circ}C$). Mechanically-Alloyed (MAed) particles were examined by means of cross-sectional images using scanning electron microscopy (SEM). Both mechanical alloying and sintering behavior was investigated by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM). To confirm the thermal behavior of $Y_2O_3$, a replica method was applied after the SPS process. From the SEM observation, MAed powders milled for 10 min showed a lamella structure consisting of rich regions of Fe and Cr, while both regions were fully alloyed after 90 min. The results of sintering behavior clearly indicate that as the SPS temperature increased, micro-sized defects decreased and the density of consolidated ODS alloys increased. TEM images revealed that precipitates smaller than 50 nm consisted of $YCrO_3$.

3차원 적층 제조 공정(DED) 기반 Al-6061+Al-12Si 합금 조합 실험 (Combinatorial Experiment for Al-6061 and Al-12Si alloy Based on Directed Energy Deposition (DED) Process)

  • 전서연;박수원;송용욱;박지원;박현영;이보람;최현주
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.463-469
    • /
    • 2023
  • Aluminum alloys, known for their high strength-to-weight ratios and impressive electrical and thermal conductivities, are extensively used in numerous engineering sectors, such as aerospace, automotive, and construction. Recently, significant efforts have been made to develop novel aluminum alloys specifically tailored for additive manufacturing. These new alloys aim to provide an optimal balance between mechanical properties and thermal/electrical conductivities. In this study, nine combinatorial samples with various alloy compositions were fabricated using direct energy deposition (DED) additive manufacturing by adjusting the feeding speeds of Al6061 alloy and Al-12Si alloy powders. The effects of the alloying elements on the microstructure, electrical conductivity, and hardness were investigated. Generally, as the Si and Cu contents decreased, electrical conductivity increased and hardness decreased, exhibiting trade-off characteristics. However, electrical conductivity and hardness showed an optimal combination when the Si content was adjusted to below 4.5 wt%, which can sufficiently suppress the grain boundary segregation of the α-Si precipitates, and the Cu content was controlled to induce the formation of Al2Cu precipitates.

기계적합금화에 의한 $AC4A/SiC_p$복합재료의 제조 및 기계적 특성 (Fabrication and mdchanical properties of $AC4A/SiC_p$ composites by mechanical alloying)

  • 이병훈;조형준;임영호;이준희
    • 한국재료학회지
    • /
    • 제4권6호
    • /
    • pp.651-661
    • /
    • 1994
  • 급냉응고법과 기계적합금화를 병행하여 자동차 산업용 부품에 널리 사용되고 있는 AC4A 합금에 열적으로 안정한 $SiC_p$세라믹 입자를 첨가하여 가공경화 및 미세균일화에 의한 분산강호 효과를 갖는 복합재료를 제조하고, 그에 따른 기계적특성을 조사하여 다음과 같은 결과를 얻을 수 있었다. 420분간 기계적합금화를 시켰을 때 10~20$\mu \textrm{m}$ 정도의 미세하고 균일한 구형의 복합분말을 얻을수 있었으며, 이 상태에서 정상상태를 의미하는 포화 경도값이 나타났다. 기계적합금화에 따른 분말의 X-선 회절시험에서 기계적 합금화 시간에 따라 결정립 미세화와 불균일 변형에 의해 강도가 떨어지고, 회절폭이 넓어진다. 분말 압출재의 시효경화는 1000분 시효에서 최대 경도값을 나타낸다. 인장시험에 있어서 압출재는 주조재에 비해 2배 이상의 인장값을 얻을 수 있었으며, $500^{\circ}C$에서도 우수한 인장값을 얻을 수 있었다.

  • PDF