• 제목/요약/키워드: Powder alloying process

검색결과 147건 처리시간 0.027초

기계적 합금화 공정에 의한 Fe가 코팅된 Mg 탈황 분말 제조 연구 (Fabrication of Fe coated Mg Based Desulfurization Powder by Mechanical Alloying Process)

  • 송준우;;천병선;홍순직
    • 한국분말재료학회지
    • /
    • 제19권3호
    • /
    • pp.226-231
    • /
    • 2012
  • In this research, the coating behavior of Mg and Fe desulfurization powder fabricated by low energy and conventional planetary mill equipment was investigated as a function of milling time, which produces uniform Fe coated powders due to milling energy. Since high energy ball milling results in breaking the Fe coated Mg powders into coarse particles, low energy ball milling was considered appropriate for this study, and can be implemented in desulfurization industry widely. XRD and FE-SEM analyses were carried out to investigate the microstructure and distribution of the coating material. The thickness of the Fe coating layer reaches a maximum of 14 ${\mu}m$ at 20 milling hours. The BCC structures of Fe particles are deformed due to the slip system of Fe coated Mg particles.

In-Process합성에 의한 고기능 금속간화합물의 복합성형 (Complex Forming of the High-Functional Intermetallic Compound by the In Process Synthesis)

  • 한정현;박성갑;박용호
    • 한국분말재료학회지
    • /
    • 제13권6호
    • /
    • pp.408-414
    • /
    • 2006
  • [ $MoSi_2$ ] alloys with Al, B or Nb were prepared by an advanced consolidation process that combined mechanical alloying with pulse discharge sintering (complex forming) to improve the mechanical properties. Their microstructure and mechanical properties were investigated. The $MoSi_2$ alloys fabricated by complex forming method showed very fine microstructure when compared with the sample sintered from commercial $MoSi_2$ powders. Alloys made from powders milled in Ar gas had fewer silica or alumina phases as compared to their counterparts sintered from powders milled in air. In densification of the sintered body, addition of B was more effective than Al or Nb. Both Victors hardness and tensile test indicated that the alloy fabricated by the complex forming method showed better properties than the sample sintered from commercial $MoSi_2$ powders. The Al added alloy sintered from the powders milled in air had the superior mechanical properties due to the suppression of $SiO_2$ and formation of fine $Al_2O_3$ particles.

기계적 밀링 처리하여 SPS법으로 제작한 티타늄의 미세조직과 강화기구 특성 (Microstructure and Strengthening Mechanism Characteristics of Titanium Fabricated by SPS Method after Mechanical Milling Treatment)

  • 한창석;김준성;심우빈
    • 한국재료학회지
    • /
    • 제33권6호
    • /
    • pp.242-250
    • /
    • 2023
  • Titanium, which has excellent strength and toughness characteristics, is increasingly used in the aerospace field. Among the titanium alloys used for body parts, more than 80 % are Ti-6Al-4V alloys with a tensile strength of 931 MPa. The spark plasma sintering (SPS) method is used for solidification molding of powder manufactured by the mechanical milling (MM) method, by sintering at low temperature for a short time. This sintering method avoids coarsening of the fine crystal grains or dispersed particles of the MM powder. To improve the mechanical properties of pure titanium without adding alloying elements, stearic acid was added to pure titanium powder as a process control agent (PCA), and MM treatment was performed. The properties of the MM powder and SPS material produced by solidifying the powder were investigated by hardness measurement, X-ray diffraction, density measurement and structure observation. The processing deformation of the pure titanium powder depends on the amount of stearic acid added and the MM treatment time. TiN was also generated in powder treated by MM 8 h with 0.50 g of added stearic acid, and the hardness of the powder was higher than that of Ti-6Al-4V alloy when treated with MM for 8 h. When the MM-treated powder was solidified in the SPS equipment, TiC was formed by the solid phase reaction. The SPS material prepared as a powder treated with MM 8 h by adding 0.50 g of stearic acid also formed TiN and exhibited the highest hardness of Hv1253.

PTA법에 의한 Al 합금표면의 Si 합금층 형성과 내마모성 개선 (Improvement of Wear Resistance and Formation of Si Alloyed Layer on Aluminum Alloy by PTA Process)

  • 박성두;이영호
    • Journal of Welding and Joining
    • /
    • 제15권5호
    • /
    • pp.134-143
    • /
    • 1997
  • The formation of thick alloyed layer with high Si content have been investigated on the surface of Al alloy (A5083) plate by PTA process with Si powder. Hardening characteristics and wear resistance of alloyed layer was examined in relation to the microstructure of alloyed layer. Thick hardened layer in mm-order thickness on the surface of A5083 plate can be formed by PTA process with wide range of process condition by using Si powder as alloying element because of eutectic reaction of Al-Si binary alloy. High temperature and rapid solidification rate of molten pool, which are features of PTA process, enable the formation of high Si content alloyed layer with uniform distribution of fine primary Si paticle. High plasma arc current was beneficial to make the alloyed layer with smooth surface appearance in wide range of powder feeding rate, because enough volume of molten pool was necessary make alloyed layer. Uniform dispersion of fine primary Si particle with about 30${\mu}{\textrm}{m}$ in particle size can be obtained in layer with Si content ranging from 30 to 50 mass %. Hardness of alloyed layer increased with increasing Si content, but increasing rate of hardness differed with macrostructure of alloyed layer. Wear resistance of alloyed layer depended on $V_{si}$(volume fraction of primary Si) and was remarkably improved to two times of base metal at 20-30% $V_{si}$ without cracking, but no more improvement was obtained at larger $V_{si}$.

  • PDF

기계적합금화에 의한 α-Fe/Al2O3 자성 나노복합재료의 제조 및 치밀화 (Fabrication and densification of magnetic α-Fe/Al2O3 nanocomposite by mechanical alloying)

  • 이충효;김한웅
    • 한국결정성장학회지
    • /
    • 제23권6호
    • /
    • pp.314-319
    • /
    • 2013
  • 본 연구에서는 $Fe_2O_3-Al$계 나노복합재료를 제조하기 위하여 실온 기계적 합금화법(MA)을 적용하였다. $Fe_2O_3$와 순금속 Al의 혼합분말을 5시간 동안 MA 처리한 결과 ${\alpha}-Fe$ 기지에 $Al_2O_3$가 미세하게 분산된 ${\alpha}-Fe/Al_2O_3$ 나노복합분말을 얻을 수 있었다. 또한 MA 분말의 자화값 및 보자력 측정을 통하여 볼밀처리 중 순금속 Al에 의한 헤마타이트의 고상환원 과정을 자세히 관찰할 수 있었다. MA 분말시료의 벌크화를 위하여 소결온도 $1000^{\circ}C$$1100^{\circ}C$, 압력 60 MPa 에서 SPS 소결을 실시하였다. SPS 과정에서 MA 5시간 시료의 수축은 소결 개시 후 $700^{\circ}C$ 이상에서 크며 소결온도 $1100^{\circ}C$까지 비교적 단조롭게 수축함을 알 수 있었다. X선 회절 결과로부터, MA 분말을 $1100^{\circ}C$에서 SPS 소결시킨 ${\alpha}-Fe/Al_2O_3$ 나노복합재료의 경우 ${\alpha}-Fe$상 평균 결정립 크기가 180 nm임을 알 수 있었다. 또한 MA 분말을 $1000^{\circ}C$에서 SPS 소결시킨 시료의 보자력이 88 Oe로 여전히 높은 값을 보이는 사실로부터 소결과정 중 자성상 ${\alpha}-Fe$의 결정립 성장이 크게 억제된 것으로 판단된다.

Fe-(Mo-Mn-P)-xSi계 합금의 성형밀도에 따른 소결거동 (Sintering behavior of Fe-(Mo-Mn-P)-xSi alloys according to the Green Density)

  • 정우영;옥진욱;박동규;안인섭
    • 한국분말재료학회지
    • /
    • 제24권5호
    • /
    • pp.400-405
    • /
    • 2017
  • The addition of a large amount of alloying elements reduces the compactibility and increases the compacting pressure, thereby shortening the life of the compacting die and increasing the process cost of commercial PM steel. In this study, the characteristic changes of Fe-Mo-P, Fe-Mn-P, and Fe-Mo-Mn-P alloys are investigated according to the Si contents to replace the expensive elements, such as Ni. All compacts with different Si contents are fabricated with the same green densities of 7.0 and $7.2g/cm^3$. The transverse rupture strength (TRS) and sintered density are measured using the specimens obtained through the sintering process. The sintered density tends to decrease, whereas the TRS increases as the Si content increases. The TRS of the sintered specimen compacted with $7.2g/cm^3$ is twice as high as that compacted with $7.0g/cm^3$.

오버레이 용접법에 의한 Al-Cu 합금 경화후막의 특성 (A Characteristics of Thick and Hard Al-Cu Alloy by Overlaying Welding Process)

  • 박정식;양변모;박경재
    • Journal of Welding and Joining
    • /
    • 제14권4호
    • /
    • pp.53-61
    • /
    • 1996
  • It was attempted to improve the wear resistance of Al alloy under the load condition by making a formation of the thicker surface hardening alloy layers. The thicker surface hardening alloy layers were formed on 6061 Al alloys overlayed by MIG and TIG welding process with Cu powders feeding. The characteristics of hardening and wear resistance have been investigated in relation to the microstructures of alloyed layers, with a selection of optimum alloying conditions for formation of overlaying layer. The results obtained were summarized as follows With increasing feeding rate of Cu powders by MIG welding, the hardness and specific wear of the overlay weld alloys were increased. It is considered that these high hardness and specific wear of overlay weld alloys were due to the formation of Θ($Al_2Cu$) phases. With increasing feeding rate of Cu powders by TIG welding, the hardness and specific wear of the overlay weld alloys were increased in feeding rates 12 and 18g/min. However, the hardness and specific wear were decreased in the powder feeding rate 38g/min. It is considered that considered that decrease of hardness and specific wear in the powder feeding rate 38g/min due to formation of ${\gamma}$($Al_4Cu_9$) phases.

  • PDF

Microstructure and Mechanical Properties of Ni3Al Matrix Composites with Fine Aluminum Oxide by PM Method

  • Han, Chang-Suk;Choi, Dong-Nyeok
    • 한국재료학회지
    • /
    • 제28권9호
    • /
    • pp.495-498
    • /
    • 2018
  • Intermetallic compound matrix composites have been expected to be established as high temperature structural components. $Ni_3Al$ is a representative intermetallic alloy, which has excellent ductility even at room temperature by adding certain alloying elements. $Ni_3Al$ matrix composites with aluminum oxide particles, which are formed by the in-situ reaction between the alloy and aluminum borate whiskers, are fabricated by a powder metallurgical method. The addition of aluminum borate whiskers disperses the synthetic aluminum oxide particles during sintering and dramatically increases the strength of the composite. The uniform dispersion of reaction synthesized aluminum oxide particles and the uniform solution of boron in the matrix seem to play an important role in the improvement in strength. There is a dramatic increase in strength with the addition of the whisker, and the maximum value is obtained at a 10 vol% addition of whisker. The $Ni_3Al$ composite with 10 vol% aluminum oxide particles $0.3{\mu}m$ in size and with 0.1 wt% boron powder fabricated by the conventional powder metallurgical process does not have such high strength because of inhomogeneous distribution of aluminum oxide particles and of boron. The tensile strength of the $Ni_3Al$ with a 10 vol% aluminum borate whisker reaches more than twice the value, 930 MPa, of the parent alloy. No third phase is observed between the aluminum oxide and the matrix.

기계적 밀링법으로 제조된 마그네슘 분말의 밀링시간에 따른 미세구조 변화와 부식거동 (Corrosion Behavior and Microstructural Evolution of Magnesium Powder with Milling Time Prepared by Mechanical Milling)

  • 안진우;황대연;김긍호;김혜성
    • 대한금속재료학회지
    • /
    • 제49권6호
    • /
    • pp.454-461
    • /
    • 2011
  • In this study, the relationship between corrosion resistance and microstructural characteristics such as grain size reduction, preferred orientation, and homogenous distribution of elements and impurity by mechanical milling of magnesium powder was investigated. Mechanical milling of pure magnesium powder exhibited a complex path to grain refinement and growth together with preferred orientation reversal with milling time. It was also found that anisotropic formation of dislocation on the basal plane of magnesium was initially the dominant mechanism for grain size reduction. After 60 hrs of milling, grain coarsening was observed and interpreted as a result of the strain relaxation process through recrystallization. In spite of the finer grain size and strong (002) texture developed in the sample prepared by spark plasma sintering at $500^{\circ}C$ for 5 min after mechanical milling for 2hrs, the sample showed a higher corrosion rate. The results from this study will be helpful for better understanding of the controlling factor for corrosion resistance and behaviors of mechanical milled magnesium powders.

기계적 합금화한 Al-Ti 시료에서 미소상 피이크의 소멸현상과 ${Al_3}Ti$ 형성에 관한 연구 (The Study on Peak Disappearance of Minor Phase and Formation of ${Al_3}Ti$ in Mechanically Alloyed Al-Ti Samples)

  • 김진곤;김혜성;김병희
    • 한국재료학회지
    • /
    • 제11권12호
    • /
    • pp.1035-1041
    • /
    • 2001
  • The refining process and solubility of Ti in Al matrix during mechanical alloying (MA) were investigated by using X-ray diffraction (XRD), transmission electron microscopy (TEM) as functions of alloy composition, milling time and ball to powder ratio (BPR). Mechanical alloyed samples were annealed for investigating their stability and the formation behavior of$Al_3Ti$in the temperature range from$200{\circ}C$to$600{\circ}C$. It is observed from present experimental that disappearance of Ti peaks in mechanically alloyed Al-10wt%Ti is not simply attributable to the dissolution of Ti into Al, but associated mainly with extreme refining and/or heavy straining of Ti particles The annealing of the mechanically alloyed Al-Ti powders show differences in aluminide formation behavior when Ti content in Al is equal to or less than l0wt% and higher than l5wt%Ti. When Ti-content in Al is equal to or less than l0wt%, the MA powders transform directly to a global equilibrium state forming $DO_{22}- type\;Al_3$Ti above$400{\circ}C$. In the Al-Ti samples with equal to or higher than l5wt%Ti, transitional phases of cubic$Al_3Ti$and tetragonal $Al_{24}Ti_8$ are formed above$400{\circ}C$. They are stable only below$500{\circ}C$, and, $DO_{22}-type\;Al_3Ti$ becomes dominant aluminide at temperature higher than$ 600{\circ}C$.

  • PDF