• Title/Summary/Keyword: Potential safety hazards

Search Result 180, Processing Time 0.029 seconds

A Study on Identification of Hazards for Their Tracking and Management (안전성활동의 추적성을 위한 초기 위험원 도출 기법에 대한 연구)

  • Han, Chan-Hee;Lee, Young-Soo;Ahn, Jin;Cho, Woo-Sik
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1008-1015
    • /
    • 2007
  • The primary purpose of the safety management is to prevent the loss of lives or physical damages arising from potential hazards in the railroad signaling system. Since such potential hazards may occur at any time during the system life cycle from design and development to maintenance, safety management activities have to be continuously taken in the course of the system life cycle. The identification of potential hazards is the early step of the safety management. However, such identification activities have to be continued during the system life cycle. Further, they have to be closely linked with system functions to prevent functional problems. This study provides a systematic approach to identification of potential hazards for their tracking and management during the system life cycle to assure the identification and definition of the most appropriate hazards.

  • PDF

Automated Safety Planning of Scaffolding-Related Hazards in Building Information Modeling (BIM)

  • Kim, Kyungki;Cho, Yong
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.255-258
    • /
    • 2015
  • Scaffolds are frequently used in construction projects. Despite the impact on the entire safety, scaffolds are rarely analyzed as part of the safety planning. While recent advances in BIM (Building Information Modeling) provides opportunity to address potential safety issues in the early planning stages, it is still labor-intensive and challenging to incorporate scaffolds into current manual jobsite safety analysis which is time-consuming and error-prone. Consequently, potential safety hazards related to scaffolds are identified and presented during the construction phase. The objective of this research is to integrate scaffolds into automated safety analysis using BIM. A safety checking system was created to simulate the movements of scaffolds along the paths of crews using the scaffolds. Algorithms in the system automatically identify safety hazards related to activities working on scaffolds. Then, the system was implemented in a commercially available BIM software program for case studies. The results show that the algorithms successfully identified safety hazards that were not noticed by project managers of the projects. The results were visualized in BIM to facilitate early safety communications.

  • PDF

The Introductory Concept of Maritime Safety Audit as a tool for Identifying Potential Hazards

  • Cho, Ik-Soon;Kim, In-Chul;Lee, Yun-Sok
    • Journal of Navigation and Port Research
    • /
    • v.34 no.9
    • /
    • pp.699-704
    • /
    • 2010
  • Recently, the navigation risk is increasing significantly with growing of vessels' volume and propelling marine facilities, water bridges and port development etc. As a result, Ministry of Land, Transport and Maritime Affairs enacted a new law called MSA(Maritime Safety Audit) as a comprehensive maritime traffic safety management scheme in order to ensure safety improvements from the early planning stage to post managing of the development which affect the maritime traffic environment. MSA as a tool for improving maritime traffic safety is a formal safety diagnosis assessment in the existing or future ship's fairway by an independent audit institute. It examines the potential hazards of maritime traffic safety about the port development, if necessary, and is to ensure the implementation of appropriate safety measures. The primary purpose of MSA is to identify potential risk elements affecting safe navigation. This paper is aimed to introduce the backgrounds, the necessity and efficiency of MSA and also to describe some technical standards and diagnostic procedures.

A Study on Safety Activity Process of Train Control System (Manual Based) (열차제어시스템 안전성활동 프로세스에 대한 연구(매뉴얼기반))

  • Han, Chan-Hee;An, Jin;Cho, Woo-Sic;Jung, Jae-Ok
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1084-1091
    • /
    • 2011
  • The primary purpose of the safety management is to prevent the loss of lives or physical damages arising from potential hazards in the railway signaling system. Since such potential hazards may occur at any time during the system life-cycle from design and development to maintenance, safety management activities have to be continuously taken in the course of the system life-cycle. In this paper, presented for Safety Activity Process. (Phase, Methods, Documentation)

  • PDF

Building Information Modeling for Temporary Structure Planning and Safety Analysis (BIM을 활용한 가설물 계획 및 안전 관리)

  • Kim, Kyungki;Cho, Yong Kwon;Park, Man-Woo
    • Journal of KIBIM
    • /
    • v.6 no.2
    • /
    • pp.12-18
    • /
    • 2016
  • The entire construction safety is significantly influenced by proper uses of temporary structures. However, in current practices, temporary structures are used without sufficient planning and analysis on their impact on safety. Consequently, problems in worker safety and loss of productivity are frequently caused related to temporary structures. This paper introduces an approach that uses Building Information Modeling (BIM) to automatically create temporary structures as part of construction plans and identifies potential safety hazards related to the temporary structures. In this study, the type of temporary structure is limited to scaffolding. Automation algorithms were developed and applied to (1) analyze daily construction site conditions (2) create required scaffolding objects, and (3) identify potential safety hazards related to scaffolding. A case study using a real-world construction project demonstrated that scaffolding objects were properly created based on user-input and potential safety hazards were successfully identified without human intervention.

Prevention through Design (PtD) of integrating accident precursors in BIM

  • Chang, Soowon;Oh, Heung Jin;Lee, JeeHee
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.94-102
    • /
    • 2022
  • Construction workers are engaged in many activities that may expose them to serious hazards, such as falling, unguarded machinery, or being struck by heavy construction equipment. Despite extensive research in building information modeling (BIM) for safety management, current approaches, detecting safety issues after design completion, may limit the opportunities to prevent predictable and potential accidents when decisions of building materials and systems are made. In this respect, this research proposes a proactive approach to detecting safety issues from the early design phase. This research aims to explore accident precursors and integrate them into BIM for tracking safety hazards during the design development process. Accident precursors can be identified from construction incident reports published by OSHA using a text mining technique. Through BIM-integrated accident precursors, construction safety hazards can be identified during the design phase. The results will contribute to supporting a successful transition from the design stage to the construction stage that considers a safe construction workplace. This will advance the body of knowledge about construction safety management by elucidating a hypothesis that safety hazards can be detected during the design phase involving decisions about materials, building elements, and equipment. In addition, the proactive approach will help the Architecture, Engineering and Construction (AEC) industry eliminate occupational safety hazards before near-miss situations appear on construction sites.

  • PDF

IDENTIFICATION OF SAFETY CONTROLS FOR ENGINEERING-SCALE PYROPROCESS FACILITY

  • MOON, SEONG-IN;SEO, SEOK-JUN;CHONG, WON-MYUNG;YOU, GIL-SUNG;KU, JEONG-HOE;KIM, HO-DONG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.915-923
    • /
    • 2015
  • Pyroprocess technology has been considered as a fuel cycle option to solve the spent fuel accumulation problems in Korea. The Korea Atomic Energy Research Institute, Daejeon, Korea has been studying pyroprocess technology, and the conceptual design of an engineering-scale pyroprocess facility, called the Reference Engineering-scale Pyroprocess Facility, has been performed on the basis of a 10 ton heavy metal throughput per year. In this paper the concept of Reference Engineering-scale Pyroprocess Facility is introduced along with its safety requirements for the protection of facility workers, collocated workers, the off-site public, and the environment. For the identification of safety structures, systems, and components and/or administrative controls, the following activities were conducted: (1) identifying hazards associated with operations; (2) identifying potential events associated with these hazards; and (3) identifying the potential preventive and/or mitigative controls that reduce the risk associated with these accident events. This study will be used to perform a safety evaluation for accidents involving any of the hazards identified, and to establish safety design policies and propose a more definite safety design.

A study on An Application for Ensuring Safety of Computer Based Automatic Train Control System (컴퓨터기반 자동열차제어장치의 안전성 확보에 관한 연구)

  • Lee jongwoo;SHIN jongwoo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.6
    • /
    • pp.261-268
    • /
    • 2005
  • This paper propose the safety design of automatic train control system which is used for controlling and monitoring train speed not to excess a permitted speed. Safety activities are shown for the computerized system to achieve a required safety requirement. The safety activities are composed of system dynamic modelling to identify potential hazards contained in the target system, to analyze sub system faults to provoke the hazards. Risks analysis are carried out to estimate losses caused from the hazards to allocate safety requirement. We Proposed design solutions for sub system to meet safety requirement.

Hazard Recognition and Construction Safety Training Efficacy using Interactive Virtual Reality (VR)

  • Saiyad, Meeranali;Rybkowski, Zofia K.;Suermann, Patrick;Dixit, Manish;Luhan, Gregory;Shanbari, Hamzah
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1209-1216
    • /
    • 2022
  • The majority of construction site incidents occur due to a lack of hazard awareness among workers on job sites. This lack of awareness is despite mandatory construction safety training, typically in the form of written content (safety manuals) or of images depicting hazards. To reduce job-site injuries and fatalities, general contractors have started adopting Virtual Reality (VR) to impart safety training to job site personnel. VR safety training can take the form of an immersive simulation comprising potential safety hazards intentionally embedded into a virtual job site; users are required to identify these hazards within a specified time frame with the expectation that they will be more adept at recognizing hazards on an actual job-site, resulting in fewer accidents. This research study seeks to identify the actual impacts of VR on construction safety awareness among participants. The research addresses the following question: Does VR improve hazard recognition awareness? The primary objective is to evaluate participants' performance of past construction safety awareness against present construction safety awareness after receiving VR training. Participants were asked to complete a multiple-choice Qualtrics™ questionnaire. The results of the study showed a statistically significant knowledge gain advantage with respect to hazard recognition and construction safety awareness with the use of interactive, immersive VR over a more conventional and passive safety training method.

  • PDF

EMC Safety Margin Verification for GEO-KOMPSAT Pyrotechnic Systems

  • Koo, Ja-Chun
    • International Journal of Aerospace System Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • Pyrotechnic initiators provide a source of pyrotechnic energy used to initiate a variety of space mechanisms. Pyrotechnic systems build in electromagnetic environment that may lead to critical or catastrophic hazards. Special precautions are need to prevent a pulse large enough to trigger the initiator from appearing in the pyrotechnic firing circuits at any but the desired time. The EMC verification shall be shown by analysis or test that the pyrotechnic systems meets the requirements of inadvertent activation. The MIL-STD-1576 and two range safeties, AFSPC and CSG, require the safety margin for electromagnetic potential hazards to pyrotechnic systems to a level at least 20 dB below the maximum no-fire power of the EED. The PC23 is equivalent to NASA standard initiator and the 1EPWH100 squib is ESA standard initiator. This paper verifies the two safety margins for electromagnetic potential hazards. The first is verified by analyzing against a RF power. The second is verified by testing against a DC current. The EMC safety margin requirement against RF power has been demonstrated through the electric field coupling analysis in differential mode with 21 dB both PC23 and 1EPWH100, and in common mode with 58 dB for PC23 and 48 dB for 1EPWH100 against the maximum no-fire power of the EED. Also, the EMC safety margin requirement against DC current has been demonstrated through the electrical isolation test for the pyrotechnic firing circuits with greater than 20 dB below the maximum no-fire current of the EED.