• Title/Summary/Keyword: Potential pathogen

Search Result 372, Processing Time 0.026 seconds

Inhibitory Effects of Atmospheric Ozone on Magnaporthe grisea conidia

  • Hur, Jae-Seoun;Kim, Jung-Ah;Kim, Minjin;Koh, Young-Jin
    • The Plant Pathology Journal
    • /
    • v.18 no.1
    • /
    • pp.43-49
    • /
    • 2002
  • Direct effects of atmospheric ozone on conidia of the rice blast pathogen, Magnaporthe grisea, were investigated to evaluate ozone-induced effects on infection potential of the rice blast fungus. Acute ozone exposure (200 nl $1^{-1}$, 8 h $day^{-1}$3 days) during sporulation significantly affected conidial morphology, appressorium formation, and disease development on rice loaves. Ozone caused reduction in conidial size and change in conidial shape. Relative cytoplasmic volume of lipids and vacuoles were increased in ozone-exposed conidia. Inhibition of appressorium formation and simultaneous increase in endogenous levee of polyamines were found in ozone-exposed conidia. The inverse relationship between appressorium formation and level of polyamines implies that ozone-mediated increase in intracellular level of polyamines may inhibit appressorium formation in rice blast fungus. Furthermore, rice plants inoculated with ozone-fumigated conidia exhibited less severe disease development than those with unfumigated conidia. This result suggests that the anti-conidial consequence of acute ozone will eventually weaken the rice blasts potential for multiple infection cycle. This further suggests that consequently, rice blast can be transformed from an explosive disease to one that has limited epidemiological potential in the field.

Antibacterial Activity of Coffea robusta Leaf Extract against Foodborne Pathogens

  • Yosboonruang, Atchariya;Ontawong, Atcharaporn;Thapmamang, Jadsada;Duangjai, Acharaporn
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1003-1010
    • /
    • 2022
  • The purpose of this study was to examine the phytochemical compounds and antibacterial activity of Coffea robusta leaf extract (RLE). The results indicated that chlorogenic acid (CGA) is a major component of RLE. The minimum inhibitory concentrations (MICs) of RLE against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Salmonella Typhimurium were 6.25, 12.5, 12.5, and 12.5 mg/ml, respectively. RLE effectively damages the bacterial cell membrane integrity, as indicated by the high amounts of proteins and nucleic acids released from the bacteria, and disrupts bacterial cell membrane potential and permeability, as revealed via fluorescence analysis. Cytotoxicity testing showed that RLE is slightly toxic toward HepG2 cells at high concentration but exhibited no toxicity toward Caco2 cells. The results from the present study suggest that RLE has excellent potential applicability as an antimicrobial in the food industry.

Application of Bacterial Endophytes to Control Bacterial Leaf Blight Disease and Promote Rice Growth

  • Ooi, Ying Shing;Nor, Nik M.I. Mohamed;Furusawa, Go;Tharek, Munirah;Ghazali, Amir H.
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.490-502
    • /
    • 2022
  • Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) disease in rice (Oryza sativa L.) and it is among the most destructive pathogen responsible for severe yield losses. Potential bacterial biocontrol agents (BCAs) with plant growth promotion (PGP) abilities can be applied to better manage the BLB disease and increase crop yield, compared to current conventional practices. Thus, this study aimed to isolate, screen, and identify potential BCAs with PGP abilities. Isolation of the BCAs was performed from internal plant tissues and rhizosphere soil of healthy and Xoo-infected rice. A total of 18 bacterial strains were successfully screened for in vitro antagonistic ability against Xoo, siderophore production and PGP potentials. Among the bacterial strains, 3 endophytes, Bacillus sp. strain USML8, Bacillus sp. strain USML9, and Bacillus sp. strain USMR1 which were isolated from diseased plants harbored the BCA traits and significantly reduced leaf blight severity of rice. Simultaneously, the endophytic BCAs also possessed plant growth promoting traits and were able to enhance rice growth. Application of the selected endophytes (BCAs-PGP) at the early growth stage of rice exhibited potential in suppressing BLB disease and promoting rice growth.

Saprolegnia parasitica Isolated from Rainbow Trout in Korea: Characterization, Anti-Saprolegnia Activity and Host Pathogen Interaction in Zebrafish Disease Model

  • Shin, Sangyeop;Kulatunga, D.C.M.;Dananjaya, S.H.S.;Nikapitiya, Chamilani;Lee, Jehee;De Zoysa, Mahanama
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.297-311
    • /
    • 2017
  • Saprolegniasis is one of the most devastating oomycete diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated oomycete belongs to the member of S. parasitica, supported by its typical features including cotton-like mycelium, zoospores and phylogenetic analysis with internal transcribed spacer region. Pathogenicity of isolated S. parasitica was developed in embryo, juvenile, and adult zebrafish as a disease model. Host-pathogen interaction in adult zebrafish was investigated at transcriptional level. Upon infection with S. parasitica, pathogen/antigen recognition and signaling (TLR2, TLR4b, TLR5b, NOD1, and major histocompatibility complex class I), pro/anti-inflammatory cytokines (interleukin $[IL]-1{\beta}$, tumor necrosis factor ${\alpha}$, IL-6, IL-8, interferon ${\gamma}$, IL-12, and IL-10), matrix metalloproteinase (MMP9 and MMP13), cell surface molecules ($CD8^+$ and $CD4^+$) and antioxidant enzymes (superoxide dismutase, catalase) related genes were differentially modulated at 3- and 12-hr post infection. As an anti-Saprolegnia agent, plant based lawsone was applied to investigate on the susceptibility of S. parasitica showing the minimum inhibitory concentration and percentage inhibition of radial growth as $200{\mu}g/mL$ and 31.8%, respectively. Moreover, natural lawsone changed the membrane permeability of S. parasitica mycelium and caused irreversible damage and disintegration to the cellular membranes of S. parasitica. Transcriptional responses of the genes of S. parasitica mycelium exposed to lawsone were altered, indicating that lawsone could be a potential anti-S. parasitica agent for controlling S. parasitica infection.

Antifungal Synergy of Theaflavin and Epicatechin Combinations Against Candida albicans

  • Betts, Jonathan W.;Wareham, David W.;Haswell, Stephen J.;Kelly, Stephen M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1322-1326
    • /
    • 2013
  • New antifungal agents are required to compensate for the increase in resistance to standard antifungal agents of Candida albicans, which is an important opportunistic fungal pathogen that causes minor infections in many individuals but very serious infections in those who are immune-compromised. In this study, combinations of theaflavin and epicatechin are investigated as potential antifungal agents and also to establish whether antifungal synergy exists between these two readily accessible and cost-effective polyphenols isolated from black and green tea. The results of disc diffusion assays showed stronger antibacterial activity of theaflavin:epicatechin combinations against C. albicans NCTC 3255 and NCTC 3179, than that of theaflavin alone. Minimum inhibitory concentrations (MICs) of 1,024 ${\mu}g/ml$ with theaflavin and 128-256 ${\mu}g/ml$ with theaflavin:epicatechin combinations were found. The fractional inhibitory concentration indexes were calculated, and the synergy between theaflavin and epicatechin against both isolates of C. albicans was confirmed. Theaflavin:epicatechin combinations show real potential for future use as a treatment for infections caused by C. albicans.

Kushta Jast, a conventional herbo-mineral immunity booster tonic: potential use in COVID-19

  • Ahmad, Tasleem;Zakir, Mohammad;Fatma, Syeda Hajra;Kazmi, Munawwar Husain;Javed, Ghazala;Ali, Shakir
    • CELLMED
    • /
    • v.10 no.3
    • /
    • pp.24.1-24.6
    • /
    • 2020
  • Kushta Jast (KJ) is a unique herbo-mineral preparation of the Unani System of Medicine (USM) which is prepared by taklis (calcination) and prescribed by the practitioners of USM for the treatment of various ailments, including the respiratory ailments. It is used as muqawwi (tonic) to boost the immunity (Muqawwi-i-badan), and can increase the phagocyte activity of the immune cells, thereby, promoting the growth and spread of lymphocytes and increasing circulating antibodies to neutralize a harmful pathogen and reduce humma or body fever (Dafi'-i-humma). Incidentally, the principal mineral component of KJ, zinc, has been widely acknowledged for its beneficial influence on the immune function, and decrease the risk of developing serious respiratory illnesses. In this manuscript, we provide a glimpse of the literature on KJ and postulate its potential beneficial effects in respiratory infections, including COVID-19.

Uncoupling Protein, UCP-4 May Be Involved in Neuronal Defects During Aging and Resistance to Pathogens in Caenorhabditis elegans

  • Cho, Injeong;Hwang, Gyu Jin;Cho, Jeong Hoon
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.680-686
    • /
    • 2016
  • Uncoupling proteins (UCPs) are mitochondrial inner membrane proteins that function to dissipate proton motive force and mitochondrial membrane potential. One UCP has been identified in Caenorhabditis elegans (C. elegans), namely UCP-4. In this study, we examined its expression and localization using a GFP marker in C. elegans. ucp-4 was expressed throughout the body from early embryo to aged adult and UCP-4 was localized in the mitochondria. It is known that increased mitochondrial membrane protential leads to a reactive oxygen species (ROS) increase, which is associated with age-related diseases, including neurodegenerative diseases in humans. A ucp-4 mutant showed increased mitochondrial membrane protential in association with increased neuronal defects during aging, and the neurons of ucp-4 overexpressing animals showed decreased neuronal defects during aging. These results suggest that UCP-4 may be involved in neuroprotection during aging via relieving mitochondrial membrane protential. We also investigated the relationship between UCP-4 and innate immunity because increased ROS can affect innate immunity. ucp-4 mutant displayed increased resistance to the pathogen Staphylococcus aureus compared to wild type. The enhanced immunity in the ucp-4 mutant could be related to increased mitochondrial membrane protential, presumably followed by increased ROS. In summary, UCP-4 might have an important role in neuronal aging and innate immune responses through mediating mitochondrial membrane protential.

Bacteriophage Usage for Bacterial Disease Management and Diagnosis in Plants

  • Vu, Nguyen Trung;Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.204-217
    • /
    • 2020
  • In nature, plants are always under the threat of pests and diseases. Pathogenic bacteria are one of the major pathogen types to cause diseases in diverse plants, resulting in negative effects on plant growth and crop yield. Chemical bactericides and antibiotics have been used as major approaches for controlling bacterial plant diseases in the field or greenhouse. However, the appearance of resistant bacteria to common antibiotics and bactericides as well as their potential negative effects on environment and human health demands bacteriologists to develop alternative control agents. Bacteriophages, the viruses that can infect and kill only target bacteria very specifically, have been demonstrated as potential agents, which may have no negative effects on environment and human health. Many bacteriophages have been isolated against diverse plant-pathogenic bacteria, and many studies have shown to efficiently manage the disease development in both controlled and open conditions such as greenhouse and field. Moreover, the specificity of bacteriophages to certain bacterial species has been applied to develop detection tools for the diagnosis of plant-pathogenic bacteria. In this paper, we summarize the promising results from greenhouse or field experiments with bacteriophages to manage diseases caused by plant-pathogenic bacteria. In addition, we summarize the usage of bacteriophages for the specific detection of plant-pathogenic bacteria.

Anticandidal Effect of Polygonum cuspidatum on C. albicans Biofilm Formation

  • Lee, Heung-Shick;Kim, Youn-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.74-80
    • /
    • 2012
  • Candida albicans is a common opportunistic pathogen and is frequently associated with biofilm formation occurring on the surfaces of host tissues and medical devices. On account of the distinct resistance of C. albicans biofilms to the conventional antifungal agents, new strategies are required to cope with these infections. The root of Polygonum cuspidatum has been used for medicinal purposes in East Asia. The aim of this study was to assess the anticandidal potential of the P. cuspidatum ethanol extract by evaluating biofilm formation, integrity of the cell membranes of C. albicans and adhesion of C. albicans cells to polystyrene surfaces. The growth and development of the biofilm was assessed using an XTT reduction assay, and the extract (0.39 mg/ml) significantly reduced ($41.1{\pm}17.8%$) biofilm formation of 11 C. albicans strains. The extract damaged the cell membranes of C. albicans and remarkably inhibited cell adhesion to polystyrene surfaces. The plant extract displayed fungistatic activity without significant hemolytic activity. Based on the results of this study, the P. cuspidatum extract has promising potential for use in treating biofilm-associated Candida infection.

Microbiota Analysis and Microbiological Hazard Assessment in Chinese Chive (Allium tuberosum Rottler) Depending on Retail Types

  • Seo, Dong Woo;Yum, Su-jin;Lee, Heoun Reoul;Kim, Seung Min;Jeong, Hee Gon
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.195-204
    • /
    • 2022
  • Chinese chive (Allium tuberosum Rottler) has potential risks associated with pathogenic bacterial contamination as it is usually consumed raw. In this study, we investigated the microbiota of Chinese chives purchased from traditional markets and grocery stores in March (Spring) and June (Summer) 2017. Differences in bacterial diversity were observed, and the microbial composition varied across sampling times and sites. In June, potential pathogenic genera, such as Escherichia, Enterobacter, and Pantoea, accounted for a high proportion of the microbiota in samples purchased from the traditional market. A large number of pathogenic bacteria (Acinetobacter lwoffii, Bacillus cereus, Klebsiella pneumoniae, and Serratia marcescens) were detected in the June samples at a relatively high rate. In addition, the influence of the washing treatment on Chinese chive microbiota was analyzed. After storage at 26℃, the washing treatment accelerated the growth of enterohemorrhagic Escherichia coli (EHEC) because it caused dynamic shifts in Chinese chive indigenous microbiota. These results expand our knowledge of the microbiota in Chinese chives and provide data for the prediction and prevention of food-borne illnesses.