• Title/Summary/Keyword: Potential of Hydrogen

Search Result 914, Processing Time 0.038 seconds

Geoenvironmental Influence on the Recycled Soil from Demolition Concrete Structures for using in Low Landfilling (건설폐토석의 성토에 따른 지반환경적 영향)

  • Shin, Eun-Chul;Kang, Jeong-Ku;Ahn, Min-Hee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.21-30
    • /
    • 2011
  • The recycled soil that is proceeded from demolition concrete structures was analyzed by the methods of the physical and mechanical tests of soil and TCLP test to use the soil in low landfilling for the construction of an industrial complex. The laboratory test for diffusion of alkali ion in soil mass was analyzed by the methods of XRF and ICP. The fish toxicity test was also conducted to find an environmental influence. The recycled soil through the laboratory test satisfied the engineering property for low landfilling and the criteria of soil contamination. However, the solution which producted by 1:1 ratio of recycled soil and water contained the high pH concentration by alkali ion. The calcium hydroxide solution by CSH cement paste was estimated as the main reason why pH concentration is increased more than 9.0. The high pH concentration in recycled soils causes a toxicity to the livability of fishes. A diffusion area of pH concentration in the ground was analyzed by the Visual Modflow Ver. 2009 program based on geotechnical investigation. The high pH concentration in the recycled soils can be remained as high value due to cement paste in the long term period. Therefore, in the early stage of landfilling work, the mixing with the weathered granite soil is necessary to control the pH concentration.

Anti-oxidative and Anti-inflammatory Activities of Desmodium heterocarpon Extract in RAW 264.7 Cells (RAW 264.7 세포에서 Desmodium heterocarpon 추출물의 항산화 및 항염증 활성)

  • Lee, Su Hyeon;Jin, Kyong-Suk;Son, Yu Ri;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.216-222
    • /
    • 2018
  • Desmodium heterocarpon is one of vines belongs to Fabaceae family, mainly distributed in Asian countries such as Korea and Japan. This study was conducted to explore new nutraceutical resources from the plant kingdom possessing biological activities. To fulfill this purpose, the anti-oxidative and anti-inflammatory activities of D. heterocarpon ethanol extract (DHEE) were evaluated by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity assay, reactive oxygen species (ROS) scavenging activity assay, nitric oxide (NO) inhibitory activity assay, and the analysis of related protein expressions by Western blot hybridization. DHEE exhibited potent anti-oxidative activity as confirmed by DPPH radical scavenging capacity against DPPH similar with ascorbic acid, a well-known anti-oxidative agent, used as a positive control. DHEE also effectively suppressed hydrogen peroxide ($H_2O_2$)-induced ROS on RAW 264.7 murine macrophage cells. Furthermore, DHEE induced the expression of the anti-oxidative enzyme heme oxygenase 1 (HO-1), and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2) as a dose dependent manner. DHEE inhibited lipopolysaccharide (LPS) induced nitric oxide (NO) formation as a consequence of inducible NO synthase (iNOS) down regulation. Taken together, these results suggest that DHEE has anti-oxidative and anti-inflammatory activities and thus appears to be useful sources as potential anti-oxidant and anti-inflammatory agents. The identification of active compounds that confer biological activities of DHEE might be needed.

Anti-oxidative Activity of Five Plant Extracts including Apios fortune, Colubrina arborescens, Croton caudatus, Osmanthus matsumuranus and Schima noronhae (Apios fortunei, Colubrina arborescens, Croton caudatus, Osmanthus matsumuranus, 그리고 Schima noronhae를 포함하는 5종 식물 추출물의 항산화 활성)

  • Lee, Su Hyeon;Jin, Kyong-Suk;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1092-1099
    • /
    • 2018
  • This study was orchestrated with the purpose of uncovering new nutraceutical resources possessing biological activities in the plant kingdom. To fulfill our objective, we analyzed several plant extracts and selected five species possessing powerful anti-oxidative activity. The anti-oxidative effect of these five plants, Apios fortunei Maxim., Colubrina arborescens Sarg., Croton caudatus Geiseler, Osmanthus matsumuranus Hayata and Schima noronhae Reinw. ethanol extracts were then evaluated by using in vitro assay, cell model system, and Western blot analysis of target proteins. As the results, all of them possessed the potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl (DPPH), similar with that of ascorbic acid, used as a common positive control. Moreover, they strongly inhibited hydrogen peroxide ($H_2O_2$)-induced reactive oxygen species (ROS), in a dose-dependent manner, in RAW 264.7 murine macrophage cells. Furthermore, they induced the protein expression of an anti-oxidative enzyme, heme oxygenase 1 (HO-1), and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2). Taken together, these results indicate that these five plants possess potent anti-oxidative activity and thus appear to be useful sources as potential anti-oxidant agents. Therefore, they might be utilized as promising materials in the field of nutraceuticals.

Antioxidant Activity of Enzymatic Extracts from Sargassum coreanum (큰잎모자반 효소적 추출물의 항산화 활성)

  • Ko, Seok-Chun;Kang, Sung-Myung;Ahn, Gin-Nae;Yang, Hyun-Pil;Kim, Kil-Nam;Jeon, You-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.4
    • /
    • pp.494-499
    • /
    • 2010
  • In this study, Sargassum coreanum was enzymatically hydrolyzed to prepare water-soluble extracts by using five carbohydrates (Viscozyme, Celluclast, AMG, Termamyl and Ultraflo) and five proteases (Protamex, Kojizyme, Neutrase, Flavozyme and Alcalase) and their potential antioxidant activity were evaluated. The Celluclast and Neutrase extracts of Sargassum coreanum exhibited better DPPH radical scavenging activities (92.42% and 92.78%, respectively) and hydrogen peroxide ($H_2O_2$) scavenging activities (58.28% and 57.97%, respectively) compared to those of other enzymatic extracts. These results suggest that Sargassum coreanum would be a good raw materials for antioxidant and enzymatic hydrolysis would be a good strategy to prepare antioxidant extracts from seaweeds.

Evaluation of Biohydrogen Production Using Various Inoculum Sources (다양한 접종원을 이용한 바이오수소 생산 평가)

  • Geumhee, Kim;Jiho, Lee;Hyoju, Yang;Yun-Yeong, Lee;Yoonyong, Yang;Sungho, Choi;Moonsuk, Hur;Byounghee, Lee;Kyung-Suk, Cho
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.557-562
    • /
    • 2022
  • In this study we evaluated biohydrogen production potential as operational parameters (substrate, salt concentration, and temperature) using eight inoculum sources. While the volumetric biohydrogen production rate was significantly affected by temperature and inoculum sources, substrate and salt concentration did not have a significant effect on the biohydrogen production. Mesophilic temperature (37℃) was also found more appropriate for the hydrogen production than thermophilic temperature (50℃). Rate, while the eight inoculum sources, anaerobic digestion sludge exhibited the fastest biohydrogen production. The maximum production rate from anaerobic digestion sludge was 2,729 and 1,385 ml-H2·l-1·d-1 at mesophilic and thermophilic temperature, respectively.

Crystal Structure and Thermal Stability Study on Tetrabutylammonium Hexamolybdate [n-Bu4N]2[Mo6O19](TBAM)

  • Zhao, Pu Su;Zhao, Zhan Ru;Jian, Fang Fang;Lu, Lu De
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.553-558
    • /
    • 2003
  • The crystal structure of $[n-Bu_4N]_2[Mo_6O_{19}]$(TBAM) (n-Bu4N=tetrabutylammonium) has been determined by X-ray crystallography. It crystallizes in the monoclinic system, space group C2/c, with lattice parameters ${\alpha}$=16.314(5), b=17.288(5), c=17.776(4)${\AA}$ ${\beta}$=101.47(3), and Z=4. In $[Mo_6O{19}]^{2-}$ anion, Mo atoms occupy six vertices of octahedron and each Mo atom is coordinated by six oxygen atoms to adopt distorted octahedral coordination geometry. The average bond distance of Mo-Ot (terminal), Mo-Ob (bridged) and Mo-Oc (central) are 1.680 ${\AA}$, 1.931 ${\AA}$ and 2.325 ${\AA}$ respectively. In $[n-Bu_4N]^+$ cation, the N atom possesses a slightly distorted tetrahedral geometry. There are some potential extensive C-H ${\cdots}$ O hydrogen bonds in the lattice, by which connecte molecules and stabilize the crystal structure. Thermogravimetric analysis suggests that thermal decomposition of the title compound includes two transitions and it loses weight at 356.0 and 803.5 $^{\circ}$, respectively, and the residue presumable be $Mo_2O_2$. Accordingly, the title compound has high thermal stability.

Black Sesame Ethanolic Extract Promotes Melanin Synthesis (Melanin 합성을 촉진하는 흑임자 에탄올추출물의 효능)

  • Jeon, Sojeong;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1452-1461
    • /
    • 2017
  • Melanin production by melanocytes in human hair follicles decreases with time and leads to the graying process, which is a phenotype of human aging and an index of aging. The reduction in melanin production is the result of decreased tyrosinase activity in hair follicles and an accumulation of active oxygen species, such as hydrogen peroxide. This study investigated antioxidant effects and melanin-promoting effects in B16F1 cells treated with black sesame ethanolic nonpolar-soluble extract (SBEEO) and black sesame ethanolic polar-soluble extract (SBEEP). In antioxidation experiments, both SBEEP and SBEEO did not eliminate 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical, but SBEEO at $64{\mu}g/ml$ showed low reducing power. SBEEP exerted cytotoxic effects at concentrations greater than $8{\mu}g/ml$, whereas SBEEO showed cytotoxic effects at concentrations greater than $4{\mu}g/ml$. SBEEP and SBEEO induced melanin synthesis, tyrosinase activity, and DOPA oxidase activity in vitro. In live cells, melanin synthesis was greater in the SBEEP treatment group as compared with that in the SBEEO treatment group. SBEEP stimulated melanin synthesis by modulating the expression of tyrosinase-related protein-2 (TRP-2), which is an important enzyme in melanin synthesis. These results imply that SBEEP obtained from black sesame ethanolic extract may have the potential to improve melanin synthesis.

The Relation between the Phase-Shift Profile for the Intermediate Frequencies and the Langmuir Adsorption Isotherm (중간주파수에서 위상이동 변화와 Langmuir흡착등온식 사이의 관계)

  • Chun Jang Ho;Mun Kyeong Hyeon;Cho Chong Dug
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.1
    • /
    • pp.25-30
    • /
    • 2000
  • The relation between the phase-shift profile for the intermediate frequencies and the Langmuir adsorption isotherm at the poly-$Pt/0.1\;M\;H_2SO_4$ aqueous electrolyte interface has been studied using ac impedance measurements, i.e., the phase-shift methods. The suggested interfacial equivalent circuit consists of the serial connection of the electrolyte resistance ($R_S$), the faradaic resistance $(R_F)$ and the equivalent circuit element $(C_P)$ of the adsorption pseudocapacitance $(C_\varphi)$. The delayed phase shift $(\varphi)$ depends on both the cathode potential (E) and frequency (f), and is given by $\varphi=-tan^{-1}[1/2{\pi}f(R_s+R_F)C_p]$. The phase-shift profile $(\varphi\;vs.\;E)$ for the intermediate frequency (ca. 6Hz) can be used as an experimental method to determine the Langmuir adsorption isotherm (9 vs. E). The equilibrium constant (K) for H adsorption and the standard free energy $({\Delta}G_{ads})$ of H adsorption at the poly-$Pt/0.1\;M\;H_2SO_4$ electrolyte interface are $1.8\times10^{-4}\;and\;21.4kJ/mol$, respectively. The H adsorption is attributed to the over-potentially deposited hydrogen (OPD H).

Blue Carbon Resources in the East Sea of Korea and Their Values and Potential Applications (동해안 블루카본 자원의 가치와 활용방안)

  • Yoon, Ho-Sung;Do, Jeong-Mi;Jeon, Byung Hee;Yeo, Hee-Tae;Jang, Hyeong Seok;Yang, Hee Wook;Suh, Ho Seong;Hong, Ji Won
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.578-587
    • /
    • 2022
  • Korea, as the world's 7th largest emitter of greenhouse gases, has raised the national greenhouse gas reduction target as international regulations have been strengthened. As it is possible to utilize coastal and marine ecosystems as important nature-based solutions (NbS) for implementing climate change mitigation or adaptation plans, the blue carbon ecosystem is now receiving attention. Blue carbon refers to carbon that is deposited and stored for a long period after carbon dioxide (CO2) is absorbed as biomass by coastal ecosystems or oceanic ecosystems through photosynthesis. Currently, there are only three blue carbon ecosystems officially recognized by the Intergovernmental Panel on Climate Change (IPCC): mangroves, salt marshes, and seagrasses. However, the results of new research on the high CO2 sequestration and storage capacity of various new blue carbon sinks, such as seaweeds, microalgae, coral reefs, and non-vegetated tidal flats, have been continuously reported to the academic community recently. The possibility of IPCC international accreditation is gradually increasing through scientific verification related to calculations. In this review, the current status and potential value of seaweeds, seagrass fields, and non-vegetated tidal flats, which are sources of blue carbon on the east coast, are discussed. This paper confirms that seaweed resources are the most effective NbS in the East Sea of Korea. In addition, we would like to suggest the direction of research and development (R&D) and utilization so that new blue carbon sinks can obtain international IPCC certification in the near future.

The Preparation and Property of Dye Sensitized Solar Cells using TiO2 (TiO2를 이용한 염료감응형 태양전지의 제조 및 특성)

  • Kim, Gil-Sung;Kim, Young-Soon;Kim, Hyung-Il;Seo, Hyung-Kee;Yang, O-Bong;Shin, Hyung-Shik
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.179-186
    • /
    • 2006
  • Two types of $TiO_2$, nanotube and nanoparticle, were used for the mesoporous coatings by doctor blade technique followed by calcining at $450^{\circ}C$. The coatings were used as working materials for dye-sensitized solar cells (DSCs) later on and their photovoltaic characterization was carried out. The nanoparticle was synthesized from hydrogen titanate nanotube by hydrothermal treatment at $180^{\circ}C$ for 24 hr. The solar energy conversion efficiency (${\eta}$) of DSCs prepared by this nanoparticle reached 8.07% with $V_{OC}$ (open-circuit potential) of 0.81 V, $I_{SC}$ (short-circuit current) of $18.29mV/cm^2$, and FF (fill factor) of 66.95%, respectively. For the preparation of nanotube, the concentration of NaOH solution varied from 3 M to 5 M. In the case of DSCs fabricated with nanotubes from 3 M NaOH solution, the ${\eta}$ reached 6.19% with $V_{OC}$ of 0.77 V, $I_{SC}$ of $12.41mV/cm^2$, and FF of 64.49%, respectively. On the other hand, in the case of 5 M solution, the photovoltaic ${\eta}$ was decreased with 4.09% due to a loss of photocarriers. In conclusion, it is demonstrated that the solar energy conversion efficiency of DSCs made from $TiO_2$ nanoparticle showed best results among those under investigation.