• Title/Summary/Keyword: Potential of Hydrogen

Search Result 914, Processing Time 0.03 seconds

Estimation of verticle fluxes of nitrogen compounds in tidal flats of the Keum river estuary (금강하구 갯벌내 질소화합물질의 연직적인 플럭스 평가)

  • Kim Do Hee;Yang Jae Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.3-10
    • /
    • 2000
  • The main purpose of this study were to estimate the benthic fluxes of dissolved inorganic nitrogen (DIN) from the sediment and denitrification rates in tidal flats of the Keum river estuary. Sediment specimens were collected by a core sampler from three stations along the Keum river estuary in April, August and December, 1999. The sediments were composed of 1.18 %, 29.34 % and 69.49 % of gravel and sand, sand and silt, respectively. The mean ignition loss of the sediment was found 6.7 % and its Oxidation Reduction Potential (ORP) was measured -12 mV. The total hydrogen sulfides was determined about 0.26 mg/gㆍdry. The estimated outflux of ammonium was found 11.2 m mole N/m²ㆍday from the sediment, whereas -1.09 m mole N/m²ㆍday of influx was obtained for nitrate and nitrite through the incubation experiment of sediment cores. Total DIN flux was 10.2 m mole N/m²ㆍday outflux from the sediment. From the incubation experiments executed with the flux studies, mean denitrification rate was found 30.6 m mole N₂/m²ㆍday measured by the direct assay of N₂ production technique. On the basis that DIN flux and denitrification rate in sediment of tidal flat of the Keum river estuary are may be effects to control the algal biomass in the coastal environment, it seems inevitable to pay more attention to investigate the flux of DIN and denitrification rate in tidal flat of the Keum river estuary.

  • PDF

Catalytic Reduction of Oxidized Mercury to Elemental Form by Transition Metals for Hg CEMS (수은 연속측정시스템에서 전이금속에 의한 산화수은의 원소수은으로의 촉매환원)

  • Ham, Sung-Won
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.269-276
    • /
    • 2014
  • This study was aimed to develop catalytic system for the dry-based reduction of oxidized mercury ($Hg^{2+}$) to elemental mercury ($Hg^0$) which is one of the most important components comprising mercury continuous emission monitoring system (Hg-CEMS). Based on the standard potential in oxidation-reduction reaction, transition metals including Fe, Cu, Ni and Co were selected as possible candidates for catalyst proceeding spontaneous reduction of $Hg^{2+}$ into $Hg^0$. These transition metal catalysts revealed high activity for reduction of $Hg^{2+}$ into $Hg^0$ in the absence of oxygen in reactant gases. However, their activities were greatly decreased in the presence of oxygen, which was attributed to the transformation of transition metals by oxygen to the corresponding transition metal oxides with less catalytic activity for the reduction of oxidized mercury. Hydrogen supplied to the reactant gases significantly enhanced $Hg^{2+}$ reduction activity even in the presence of oxygen. It might be due to occurrence of combustion reaction between $H_2$ and $O_2$ causing the consumption of $O_2$ at such high reaction temperature at which oxidized mercury reduction reaction took place. Because the system showed high activity for $Hg^{2+}$ reduction to $Hg^0$, which was compatible to that of wet-chemistry technology using $SnCl_2$ solution, the catalytic reduction system of Fe catalyst with the supply of $H_2$ could be employed as a commercial system for the reduction of oxidized mercury to elemental mercury.

A Study on the Hydrated and Dehydrated $Mn^{2+}$-Exchanged Zeolite A ($Mn^{2+}$-치환 제올라이트 A 의 수화 및 탈수 구조에 관한 연구)

  • Jong Yul Park;Yang Kim;Un Sik Kim;Sang Gu Choi
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.623-632
    • /
    • 1989
  • The positions and interaction energies of framework atoms and water molecules of $Mn^{2+}$-exchanged zeolite A were calculated using some potential energy functions and an optimization program. The sum of interaction energies of framework atoms in dehydrated $Mn_{4,5}Na_3-A$ was approximately the same as those of thermally stable $Ca^{2+}$-or $Mg^{2+}$-exchanged zeolite A. Since $Mn^{2+}$ ions can form good coordination bonds with framework oxygens even in dehydrated state, $Mn^{2+}$-exchanged zeolite A is considered to be thermally stable. The optimized positions of framework atoms and ions in this work are agreed well with the crystallographic data. Three groups of water molecules are found in hydrated $Mn^{2+}$-exchanged zeolite A; W(I) group of water molecules having only hydrogen bonds, W(II) group coordinated to $Na^+$ ion, and W(III) group coordinated to $Mn^{2+}$ ion. The average binding energy of each group of water molecules decrease in the order of W(III) > W(II) > W(I). The activation energies in the dehydration reaction of each group of water molecules increased in accordance with their binding energy.

  • PDF

Pharmacophore Modeling, Virtual Screening and Molecular Docking Studies for Identification of New Inverse Agonists of Human Histamine H1 Receptor

  • Thangapandian, Sundarapandian;Krishnamoorthy, Navaneethakrishnan;John, Shalini;Sakkiah, Sugunadevi;Lazar, Prettina;Lee, Yu-No;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.52-58
    • /
    • 2010
  • Human histamine H1 receptor (HHR1) is a G protein-coupled receptor and a primary target for antiallergic therapy. Here, the ligand-based three-dimensional pharmacophore models were built from a set of known HHR1 inverse agonists using HypoGen module of CATALYST software. All ten generated pharmacophore models consist of five essential features: hydrogen bond acceptor, ring aromatic, positive ionizable and two hydrophobic functions. Best model had a correlation coefficient of 0.854 for training set compounds and it was validated with an external test set with a high correlation value of 0.925. Using this model Maybridge database containing 60,000 compounds was screened for potential leads. A rigorous screening for drug-like compounds unveiled RH01692 and SPB00834, two novel molecules for HHR1 with good CATALYST fit and estimated activity values. The new lead molecules were docked into the active site of constructed HHR1 homology model based on recently crystallized squid rhodopsin as template. Both the hit compounds were found to have critical interactions with Glu177, Phe432 and other important amino acids. The interpretations of this study may effectively be deployed in designing of novel HHR1 inverse agonists.

Chemical Component, Antioxidative and Antimicrobial Activities of Chestnut(Castanea crenata) Leaves (밤나무 잎의 화학성분, 항산화 및 항균활성)

  • 정창호;허재연;심기환
    • Food Science and Preservation
    • /
    • v.9 no.2
    • /
    • pp.234-239
    • /
    • 2002
  • To study the potential of the chestnut(Castanea crenata S.) leaves, as raw materials for functional food and medicine, chemical components, antioxidative and antimicrobial activities were carried out. The proximate composition was composed of total sugar 11.95%, crude fat 11.50%, crude fiber 10.11%, crude protein 7.50% and ash 1.79% and the components of major minerals were Ca 215.7 mg%, 196.6 mg%. The content of vitamin C wag 12.5 mg% and free sugar was composed of glucose 3.33%, fructose 0.25% and sucrose 0.022%. The major fatty acids in leaves of chestnut were composed of linoleic acid and the amounts of those showed 37.88% area percent. The major amino acids of chestnut leaves were glutamic acid(295.4 mg%), proline(285.7 mg%), aspartic acid(245.5 mg%), arginine(240.8 mg%), phenylalanine(237.4 mg%) and leucine(230.6 mg%). The ratio of essential/total amino acid was 48.3%. Methanol extract and ethyl acetate fraction showed stronger activity of the hydrogen donating activities, each of 72.52 % and 84.12 %, respectively. In solvent extracts using methanol, ethanol, ethyl acetate, chloroform and hexane, methanol extract showed the most effective antimicrobial activities. Antimicrobial activities of ethyl acetate fraction of methanol extract was higher than those of other fractions.

Synthesis and Optical Property of (GaN)1-x(ZnO)x Nanoparticles Using an Ultrasonic Spray Pyrolysis Process and Subsequent Chemical Transformation (초음파 분무 열분해와 화학적 변환 공정을 이용한 (GaN)1-x(ZnO)x 나노입자의 합성과 광학적 성질)

  • Kim, Jeong Hyun;Ryu, Cheol-Hui;Ji, Myungjun;Choi, Yomin;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.143-149
    • /
    • 2021
  • In this study, (GaN)1-x(ZnO)x solid solution nanoparticles with a high zinc content are prepared by ultrasonic spray pyrolysis and subsequent nitridation. The structure and morphology of the samples are investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The characterization results show a phase transition from the Zn and Ga-based oxides (ZnO or ZnGa2O4) to a (GaN)1-x(ZnO)x solid solution under an NH3 atmosphere. The effect of the precursor solution concentration and nitridation temperature on the final products are systematically investigated to obtain (GaN)1-x(ZnO)x nanoparticles with a high Zn concentration. It is confirmed that the powder synthesized from the solution in which the ratio of Zn and Ga was set to 0.8:0.2, as the initial precursor composition was composed of about 0.8-mole fraction of Zn, similar to the initially set one, through nitriding treatment at 700℃. Besides, the synthesized nanoparticles exhibited the typical XRD pattern of (GaN)1-x(ZnO)x, and a strong absorption of visible light with a bandgap energy of approximately 2.78 eV, confirming their potential use as a hydrogen production photocatalyst.

Evaluation of Possibility of using an Ultrasound Probe Sterilizer using the Steam Fumigation Method (증기훈증방식을 이용한 초음파 프로브 소독기의 사용 가능성 평가)

  • Ha, Jeong-Min;Heo, Yeong-Cheol;Han, Dong-Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.195-201
    • /
    • 2022
  • This study aims to evaluate the feasibility of the disinfection of clinical ultrasound probes using the vapor fumigation method, which can quickly achieve high-level disinfection. Upon the inspection of the microbial contamination level of clinically used ultrasound probes, nine different types of bacteria were detected. The disinfection efficacy of 7.5% and 35% hydrogen peroxide (H2O2) was comparatively tested for the detected microbes. The 35% H2O2 demonstrated superior efficacy per disinfection duration. No significant change was observed in the rubber component of the ultrasound probes as a result of the 35% H2O2 disinfection treatment. The probes were contaminated with the microbes detected in the microbial contamination level inspection and subsequently disinfected using the novel medical disinfector that utilizes the vapor fumigation method. As a result, the disinfection using the novel device achieved 100% eradication of the microbes from the probes.This study demonstrates that the novel vapor fumigation method-based disinfector provides a faster and more powerful means of disinfection than the conventional disinfection methods. Therefore, the novel disinfector has the potential to be used as a convenient ultrasound probe disinfector in clinical settings.

Evaluation of Rhizobacterial Isolates for Their Antagonistic Effects against Various Phytopathogenic Fungi (식물 근권에서 분리한 미생물의 식물병원성 진균에 대한 길항효과 검정)

  • Kim, Yun Seok;Kim, Sang woo;Lamsal, Kabir;Lee, Youn Su
    • The Korean Journal of Mycology
    • /
    • v.44 no.1
    • /
    • pp.36-47
    • /
    • 2016
  • This study was conducted to evaluate five different strains of rhizobacterial isolates viz. PA1, PA2, PA4, PA5 and PA12 for biological control against Colletotrichum acutatum, C. coccodes, C. gloeosporioides, C. dematium, Botrytis cinerea, Rhizoctonia solani, Sclerotinia minor and Fusarium sp. In vitro inhibition assay was performed on three different growth mediums, potato dextrose agar (PDA), tryptic soy agar (TSA), and PDA-TSA (1:1 v/v) for the selection of potential antagonistic isolates. According to the result, isolate PA2 showed the highest inhibitory effect with 65.5% against C. coccodes on PDA and with 96.5% against S. minor on TSA. However, the same isolate showed the highest inhibition with 58.5% against C. acutatum on PDA-TSA. In addition, an in vivo experiment was performed to evaluate these bacterial isolates for biological control against fungal pathogens. Plants treated with bacteria were analyzed with phytopathogens and plants inoculated with phytopathogens were treated with isolates to determine the biological control effect against fungi. According to the result, all five isolates tested showed inhibitory effects against phytopathogens at various levels. Mode of action of these rhizobacterial isolates was evaluated with siderophore production, protease assay, chitinase assay and phosphate solubilizing assay. Bacterial isolates were identified by 16S rDNA sequencing, which showed that isolates PA1 and PA2 belong to Bacillus subtilis, whereas, PA4, PA5, and PA12 were identified as Bacilus altitudinis, Paenibacillus polymyxa and Bacillus amyloliquefaciens, respectively. Results of the current study suggest that rhizobacterial isolates can be used for the plant growth promoting rhizobacteria (PGPR) effect as well as for biological control of various phytopathogens.

In vitro Biological Activities of Anthocyanin Crude Extracts from Black Soybean (In vitro 실험에서 검정콩 안토시아닌 조추출물의 효능 분석)

  • Lee, Hye-Jeong;Do, Wan-Nyeo;Kim, Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.1
    • /
    • pp.65-69
    • /
    • 2010
  • This study was carried out to investigate the antioxidative and anti-inflammatory activity of crude anthocyanin compounds extracted from black soybean. The crude anthocyanin compounds were extracted with 80% methanol and concentrated to powder. The most abundant compound isolated from the extract was C3G(cyanidin-3-glucoside). The superoxide dismutase (SOD) assay was conducted to assess the antioxidative activity of the crude extract. SOD, which catalyzes the dismutation of the superoxide anion into hydrogen peroxide and molecular oxygen, is one of the most important antioxidative enzymes. The black soybean anthocyanin extracts inhibited more than 90% of the superoxide radical at a concentration of 0.1% and 100% at a concentration of 0.5%, indicating that this extract displayed excellent antioxidative activity. To assess the anti-inflammatory activity of the extract, a NO(Nitric oxide) production assay in RAW 264.7 cells was performed. NO is an important physiological messenger and effector molecule in many biological systems, including immunological, neuronal and cardiovascular tissues. In this assay, the anthocyanin extracts showed a high anti-inflammatory potential, where the inhibitory potency for NO production was similar to the positive control, particularly for EGCG(epigallocatechin-3-gallate), which is known to have excellent anti-inflammatory activity. Thus, it can be concluded that the anthocyanin extracts from black soybean have distinctive pharmaceutical activities and may be used as an excellent source materials to supplement the health benefits of various food products.

Catalytic Hydrogenation of Triglyceride in a Semi-batch Reactor (Semi-batch 반응기에서의 트리글리세라이드 접촉 수소화 반응)

  • An, Jae-Yong;Lee, Choul-Ho;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • The aim of this study is to investigate the feasibility of an Ni-SA catalyst, which was prepared from nickel, kieselguhr, and alumina, for the hydrogenation of triglyceride in a bench-scale reactor. Ni-SA powders were prepared by precipitating nickel precursors on a silica and alumina support. The powder was reduced in a hydrogen flow, mixed with a saturated palm oil, and then cooled to prepare an Ni-SA catalyst tablet. The sizes of NiO crystals of a commercial Pricat catalyst and the Ni-SA catalyst prepared in this study were $35{\AA}$ and $38{\AA}$, respectively. The pore volume and pore size of the Ni-SA catalyst was much larger than the pore volume and pore size of the Pricat catalyst. In addition, the average particle size of the Ni-SA catalyst was much smaller than that of the Pricat catalyst. The triglyceride hydrogenation reaction was carried out in a semi-batch reactor using catalysts impregnated with oil and molded into tablets. It was found that the Ni-SA catalyst was superior to the commercial Pricat catalyst in triglyceride hydrogenation, which could be ascribed to the raw material and the products being less influenced by the diffusion resistance in the pores of the Ni-SA catalyst. The Ni-SA catalyst prepared in this study has the potential to replace the Pricat catalyst as a catalyst for use in the commercial process for hydrogenation of triglyceride.