• Title/Summary/Keyword: Potential energy source

Search Result 382, Processing Time 0.033 seconds

Radiation Power Control by Means of Absorptive Material Arrangement in an Enclosure (흡음재 배치를 통한 닫힌 공간에서의 소음원 방사 파워 제어)

  • 조성호;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.688-691
    • /
    • 2004
  • We have studied the possibility of global noise reduction by the sound power control through selection of distribution and impedance of absorptive materials. It is necessary to investigate the relation between the global sound energy in the field and the total sound power radiated by sources. In the previous work (1,2), the authors presented a useful design method to change boundary condition that can be useful to reduce noise in acoustically small enclosures. The possibility of total acoustic potential energy reduction by acoustic source power control is examined in an acoustically small cavity. Using acoustic energy balance equation, the relation between global noise control performance and absorptive material's arrangement/impedance is deduced. Numerical simulation is performed to interpret its physical meaning in terms of absorbent's distribution and impedance.

  • PDF

A Study on the Energy Recovery of AC PDP Driving Circuits (AC PDP 구동회로의 에너지 회생에 관한 연구)

  • Jung Woo-Chang;Kang Kyung-Woo;Yoo Jong-Gul;Hong Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.267-270
    • /
    • 2003
  • In this paper, a new energy recovery circuit for AC PDP(Plasma Display Panel) is proposed to decrease a sustain voltage and voltage stress on switching elements. In the proposed circuit, two auxiliary capacitors are connected directly to the power source through switching elements and inductors when ground potential is supplied to the panel. Therefore, the voltage across auxiliary capacitors can be increased by turns over the half of the source voltage. Because the intrinsic capacitance of PDP is charged sufficiently from the auxiliary capacitors, the level of sustain voltage and the voltage stress on the switching devices are decreased. To verify the validity of the proposed energy recovery circuit, computer simulations using PSpice program are carried out.

  • PDF

Use of Geo-spatial Information System for the Potential Location Analysis of Small Hydropower.

  • Bastola, Shiksha;Lee, Sangheop;Kareem, Kola Yusuff;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.151-151
    • /
    • 2021
  • The alarming climate change impacts are demanding the use of renewable energy sources like never before. Hydropower is one of the most cost-effective and environmental friendly energy technology recognized in the world. Big hydropower projects come up with the requirements of huge investment costs along with environmental impacts, whereas small hydropower(SHP) are considered a best solution for the economical source of energy. SHP, basically Run-of-River (RoR) type plants can be sustainable renewable energy sources and given the nature of perennial rivers flowing from steep gradient and rugged topography, feasibility of such plants is equally high in Nepal. The objective of this study is to determine the primary potential sites for the development of RoR type SHP sites using Geo-spatial Information System(GSIS). The use of GSIS enables precise survey of large area within a short period of time. This study has focused on the determination of locations by establishing defined criterions and methodologies and hence have located multiple locations rather than selecting one best location. The approach is applicable for the rapid initial screening of potential locations and results can facilitate detail feasibility study for the technical and economic analysis of SHP in the basin.

  • PDF

Fabrication and Characterization of Triboelectric Energy Harvester

  • Sung, Tae-Hoon;Lee, Jun Young;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.631-631
    • /
    • 2013
  • Battery has major drawbacks including its size and life expectancy, and environmental problem. As an alternative, energy harvesting is emerging as a potential solution to replace battery along with more energy-efficient IT devices. The idea of harnessing energy from our living environment is sustainable, semi-permanent, and eco-friendly. Also, unlike battery, energy harvester does not require much space to store energy. Therefore, energy harvesting can provide a better source of power for small, portable, and wireless devices. Among various ways of harvesting energy from our surroundings, triboelectricity is chosen due to its potential to be miniaturized, and efficient. Triboelectric effect occurs as two different materials with different polarity of charge separation come into contact through friction, and then become separated so that electric potential difference is achieved. In this research, such characteristic of triboelectricity is used as a way to convert ambient mechanical energy into electric energy.Series of recent researches have shown promising results that the triboelectric energy harvester can be simple and cost effective. However, sufficient electricity level required to operate mobile devices has not yet been achieved.In this research, our group focuses on the design and optimization of triboelectric energy harvesting device to enhance its output. By using maskless lithography to pattern Kapton film and silicon substrate, which is used as a mold for PDMS thin layer, and sputtering metal electrodes on each side, we fabricate and demonstrate different designs of triboelectric energy harvester that utilizes the contact electrification between a polymer thin film and a metal thin foil. In order to achieve optimized result, the output voltage and current are measured under diverse conditions, which include different surface structure and pattern, material, and the gap between layers.

  • PDF

An multiple energy harvester with an improved Energy Harvesting platform for Self-powered Wearable Device (웨어러블 서비스를 위한 다중 발전소자 기반 에너지 하베스터 플랫폼 구현)

  • Park, Hyun-Moon;Kim, Byung-Soo;Kim, Dong-Sun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.153-162
    • /
    • 2018
  • The importance of energy harvesting technique is increasing due to the elevated level of demand for sustainable power sources for wearable device applications. In this study, we developed an Energy Harvesting wearable Platform(EH-P) architecture which is used in the design of a multi-energy source based on TENG. The proposed switching circuit produces power with higher current at lower voltage from energy harvesting sources with lower current at higher voltage. This can powers microcontrollers for a short period of time by using PV and TENG complementarily placed under hard conditions for the sources such as indoors. As a result, the whole interface circuit is completely self-powered with this makes it possible to run of sensing on a Wearable device platform. It was possible to increase the wearable device life time by supplying more than 29% of the power consumption to wearable devices. The results presented in this paper show the potential of multi-energy harvesting platform for use in wearable harvesting applications, provide a means of choosing the energy harvesting source.

A Study on the Relationships between Substrate Bias Potential and Ion Energy Distributions (이온 플레이팅에서 기판 BIAS 전위와 이온 에너지 분포와의 상관관계 연구)

  • Sung, Y.M.;Shin, J.H.;Son, J.B.;Cho, J.S.;Park, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.472-474
    • /
    • 1995
  • A Sputter ion Plating(SIP) system with a r.f. coil electrode and the Facing Target Sputter(FTS) source was designed for high-quality thin film formation. The rf discharge was combined with DC facing target sputtering in order to enhance ionization degree of a sputtered atoms. The energy of ions incident on the substrate depended on the health potential of DC biased substrate. The mean impact ion energy increased with negative bias voltage and rf power. The adhesive force of the TiN film formed was in the range of 30$\sim$50N, and markedly influenced by substrate bias voltage.

  • PDF

Greenhouse Gas Reduction Scenario from LEAP Model Application to a University Campus-For Hanyang University Ansan Campus (LEAP 모델 적용을 통한 대학단위 온실가스 감축안 도출 - 한양대학교 안산캠퍼스 대상으로)

  • Park, Hyo-Jeong;Jung, Hye-Jin;Yi, Seung-Muk;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.280-287
    • /
    • 2012
  • The sources of greenhouse gases (GHG) at Hanyang University Ansan campus, including direct sources, indirect sources, and others, were investigated in order to establish the GHG inventory. Emission of GHG was calculated with the energy use from each source from 2007 and 2009. The indirect emission (56.7%) due to the electricity significantly contributed to total GHG emission. The scenario for the GHG reduction was designed for both campus administration and members. The reduction potential of GHG was simulated from 2007 to 2020 using Long-range Energy Alternatives Planning (LEAP) model. In case of GHG reduction scenario by campus administration, the GHG can be reduced by 63.34 ton $CO_{2eq}/yr$ for stationary combustion in the direct source, by 221.1 ton $CO_{2eq}/yr$ for mobile combustion in the direct source, and by 4,637.34 ton $CO_{2eq}/yr$ for lighting in the indirect source, compared to 2020 Business As Usual (BAU). In case of GHG reduction action scenario by campus members, the reduction potential of GHG was 1293.76 ton $CO_{2eq}/yr$. Overall, the total GHG emissions in 2020 by the both scenarios can be decreased by 24% compared to 2020 BAU.

The Current Status and the Prospects of Wind Energy (풍력발전기술의 현황과 전망)

  • Jang, Moon-Seok;Bang, Hyung-Joon
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.933-940
    • /
    • 2009
  • Recently, wind power generation is an emerging industry expanding its market rapidly thanks to the increasing need to solve the scarcity of fossil fuels and the risk of potential global warming. Wind power generation has shown to be an effective response plan to global warming, showing the most price competitiveness among the renewable energy sources by its higher efficiency. Therefore wind energy has attracted considerable attention as the industrial growth drive for the next generation. Considering Korea's high dependence of overseas energy resources, the importance of wind power is growing as the most effective alternative energy source to ensure energy security as well as becoming a key strategic industry for exports. In this study, the social and economic effects of the wind power industry is discussed and the current status and the future prospects of the wind energy market is also examined.

Comparison of Heat Pump Performance and Energy Consumption Patterns according to Heat Sources for Optimal Control of Multi-Source Heat Pumps (복합열원 히트펌프 최적 제어를 위한 열원에 따른 히트펌프 성능 및 에너지 소요량 패턴 비교)

  • Ko, Yujin;Park, Sihun;Min, Joonki
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.4
    • /
    • pp.31-38
    • /
    • 2020
  • The investment in the technology of using a combined heat source is insufficient, which utilizes the advantages of various heat sources to maximize the potential energy and at the same time increases the performance of the heat pump. In this study, as basic data for the development of a high-efficiency hybrid heat pump system that actively connects and uses various heat sources, simulations were conducted for the heat pumps in two cases where geothermal and hydrothermal heat were applied respectively. In May, COP increased by about 27.3% compared to geothermal heat. In February, the COP percentage decrease of hydrothermal heat compared to geothermal heat is -6.9%. In May, total energy consumption can be reduced by 21.1% when hydrothermal is applied compared to geothermal heat. In February, the total energy consumption increases by 3.4%.

An Estimation of Greenhouse Gases (GHGs) Emissions from Energy Sector in Changwon City and Scenario Analysis Based on the Application of Carbon Neutral by 2050 in Korea (2050 탄소중립 시나리오를 적용한 창원시 에너지부문 온실가스 배출산정 및 시나리오 분석 )

  • Ha-Neul Kim;Jae-Hyung Jung
    • Journal of Environmental Science International
    • /
    • v.32 no.6
    • /
    • pp.419-428
    • /
    • 2023
  • This study estimates the greenhouse gases (GHGs) emissions from energy sector of Changwon city from 2012 to 2020 and scenario analysis of GHGs reductions pathways in the context of the goal of 2030 NDC and 2050 carbon neutral scenario in Korea. As a result, the GHG emissions as a reference year of carbon neutral in 2018 were estimated as 8,872,641 tonCO2eq accounting for 3,851,786 tonCO2eq (43.6%) of direct source (scope 1) and 4,975,855 tonCO2eq (56.4%) of indirect source (scope 2). Especially, among indirect sources as purchased electricity, manufacturing sector emitted the largest GHG accounting for 33.0%(2,915 thousands tonCO2eq) of the total emissions from all energy sectors, scenario analysis of GHG reductions potential from the energy was analyzed 8,473,614 tonCO2eq and the residual emissions were 354,027 tonCO2eq. Purchased electricity and industry sector reducted the largest GHG accounting for 58.7%(4,976 thousands tonCO2eq) and 42.1%(3,565 thousands tonCO2eq) of the total emissions from all energy sectors, respectively.