• Title/Summary/Keyword: Potential energy diagram

Search Result 17, Processing Time 0.018 seconds

A Study on the Control of Luminous Color in Gas Discharge Tubes

  • Lee, Jong-Chan;Her, In-Sung;Park, Yong-Sung;Masaharu Aono;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.1
    • /
    • pp.5-9
    • /
    • 2004
  • In this paper, pulsed discharge is used to control the luminous color in gas discharge tubes. The luminous color of the positive column in gas discharge tubes filled with Hg-Ar-Ne (1: 9, 60[Torr]) and having no phosphor material, varies from red to blue emitted by the Ne and Hg from the pulsed discharge. With changing of pulse-width and frequency, the electron temperature in the transient period affects changes to the residual ion and metastable atom densities. The first metastable atoms containing energy levels of about 16.6 [eV]have a very high probability that a collision will result in the ionization potential of Ar being 15.8 [eV]. The change of locus in the CIE chromaticity diagram with increasing pulse-width and frequency approves the variation of luminous color.

The Effect of Attention Focusing Strategies on the Speed and Segment Coordination Characteristics of Taekwondo Hand Techniques (주의초점 전략이 태권도 기본동작의 속도 및 분절 협응패턴에 미치는 효과)

  • Kang, Sungchul;Kim, Kitae
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.3
    • /
    • pp.229-238
    • /
    • 2014
  • This study comparatively analyzed the speed and segment coordination characteristics of Taekwondo hand techniques, while different attention focusing strategies were utilized. Ten elite Taekwondo poomsae athletes participated, and three different strategies (no focus, target focus, body focus) were utilized in random order. The hand velocity and upper body segment coordination characteristics were analyzed, with the following results. First, the maximum magnitudes of the hand velocity differed between the focus conditions for the Araenaereomakgi and Momtongjireugi techniques. Second, the angular velocity and kinetic energy transfer patterns of the segments differed between the focus conditions, and in the case of the body focus condition, the movement was more correct according to the theory. Third, the shoulder and elbow joint coordination patterns differed between the focus conditions, with more efficient movement shown with the body focus condition. In conclusion, we confirmed the potential of effectively using an attention focusing strategy in a taekwondo teaching situation. However, the effect on the movement coordination and results of the movement could be changed by a difference in the cue provided or the type of the task. In addition, depending on the task, the attention focusing strategy could affect the efficiency of the movement. Therefore, coaches and masters of Taekwondo will have to constitute determine the appropriate attention focusing cues based on the task.

Electrochemical Study on Transfer Reaction of Ionizable Cefotiam across a Water/1,2-dichloroethane Interface and Drug Sensing Applications (물/1,2-Dichloroethane 계면에서 Cefotiam 약물 이온의 전이 반응 연구 및 약물 센서에 응용)

  • Liu, XiaoYun;Jeshycka, Shinta;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.581-588
    • /
    • 2018
  • In this article, electrochemical investigation of the transfer reaction of ionizable cefotiam (CTM), an antibiotic molecule across a polarized water/1,2-dichloroethane (water/1,2-DCE) interface was studied. Ion partition diagram providing the preferred charged form of CTM in either water or 1,2-DCE phase was established via the voltammetric evaluation of the transfer process of differently charged CTM species depending upon the pH variation of aqueous solutions. Thermodynamic information including the formal transfer potential and formal Gibbs transfer energy values in addition to important pharmacokinetics including partition coefficients of ionizable CTM were also evaluated. In particular, the current associated with the transfer of CTM present at pH 3.0 aqueous solution proportionally increased with respect to the CTM concentration which was further used for developing CTM sensitive ion sensor. In order to improve the portability and convenient usage, a single microhole interface fabricated in a supportive polyethylene terephthalate film was used of which hole was filled with a polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel replacing 1,2-DCE, a toxic organic solvent. A dynamic range of $1-10{\mu}M$ CTM was obtained.

Electrochemical Analysis and Applications of Tetracycline Transfer Reaction Process at Liquid/liquid Interfaces (액체/액체 계면에서 테트라사이클린 전이반응의 전기화학적 분석 및 응용)

  • Liu, XiaoYun;Han, Hye Youn;Goh, Eunseo;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.506-512
    • /
    • 2017
  • The transfer reaction characteristics of tetracycline (TC) across a polarized water/1,2-dichloroethane (1,2-DCE) interface was studied via controlling both pH and ionic strength of the aqueous phase in conjunction with cyclic and differential pulse voltammetries. Formal transfer potential values of differently charged TC ionic species at the water/1,2-DCE interface were measured as a function of pH values of the aqueous solution, which led to establishing an ionic partition diagram for TC. As a result, we could identify which TC ionic species are more dominant in the aqueous or organic phase. Thermodynamic properties including the formal transfer potential, partition coefficient and Gibbs transfer energy of TC ionic species at the water/1,2-DCE interface were also estimated. In order to construct an electrochemical sensor for TC, a single microhole supported water/polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel interface was fabricated. A well-defined voltammetric response associated with the TC ion transfer process was achieved at pH 4.0 similar to that of using the water/1,2-DCE interface. Also the measured current increased proportionally with respect to the TC concentration. A $5{\mu}M$ of TC in pH 4.0 buffer solution with a dynamic range from $5{\mu}M$ to $30{\mu}M$ TC concentration could be analyzed when using differential pulse stripping voltammetry.

Photoelectrochemical Behavior of Cu2O and Its Passivation Effect (산화구리의 광전기화학적 거동 특성)

  • Yun, Hongkwan;Hong, Soonhyun;Kim, Dojin;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Recent industrialization has led to a high demand for the use of fossil fuels. Therefore, the need for producing hydrogen and its utilization is essential for a sustainable society. For an eco-friendly future technology, photoelectrochemical water splitting using solar energy has proven promising amongst many other candidates. With this technique, semiconductors can be used as photocatalysts to generate electrons by light absorption, resulting in the reduction of hydrogen ions. The photocatalysts must be chemically stable, economically inexpensive and be able to utilize a wide range of light. From this perspective, cuprous oxide($Cu_2O$) is a promising p-type semiconductor because of its appropriate band gap. However, a major hindrance to the use of $Cu_2O$ is its instability at the potential in which hydrogen ion is reduced. In this study, gold is used as a bottom electrode during electrodeposition to obtain a preferential growth along the (111) plane of $Cu_2O$ while imperfections of the $Cu_2O$ thin films are removed. This study investigates the photoelectrochemical properties of $Cu_2O$. However, severe photo-induced corrosion impedes the use of $Cu_2O$ as a photoelectrode. Two candidates, $TiO_2$ and $SnO_2$, are selected for the passivation layer on $Cu_2O$ by by considering the Pourbaix-diagram. $TiO_2$ and $SnO_2$ passivation layers are deposited by atomic layer deposition(ALD) and a sputtering process, respectively. The investigation of the photoelectrochemical properties confirmed that $SnO_2$ is a good passivation layer for $Cu_2O$.

Effect of Relative Humidity on the Atmospheric Corrosion of Mild Steel Using the Electrochemical Wet/Dry Method (전기화학적 wet/dry 법을 이용한 탄소강의 대기부식에 미치는 상대습도의 영향에 관한 연구)

  • Yeon Jei-Won;Pyun Su-Il;Lee Woo-Jin;Choi In-Kyu;Chun Kwan-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.1
    • /
    • pp.5-10
    • /
    • 2000
  • In the present work, corrosion rate W and corrosion potential tow were simultaneously measured as a function of relative humidity RH employing the electrochemical wet and dry method as an accelelated atmospheric corrosion method. The W versus (vs.) RH curve is classified into .three regions, namely, the first W plateau region, the second region of the linear relationship between logarithmic W and RH, finally, followed by an abrupt decay region. Based upon the atmospheric corrosion mechanism of mild steel, we introduced another diagram of $\varepsilon_{corr}$ vs. RH which is divided into three regions. In the first region, the corrosion scales are composed of single lepidocrocite-phase $(\gamma-FeOOH)$; in the second region, $\gamma-FeOOH$-phase coexists with magnetite-phase $(Fe_3O_4)$ in the scales and finally the oxide scales change into a single Fe304-phase in the third region. The three distinct regions of both representations share almost each other, which is validated by FT-IR (Fourier transform infra-red) analysis and surface observation. Both representations prove to be convenient and complementary for surveying the spectrum of the atmospheric corrosion of mild steel.

SysML-Based System Modeling for Design of BIPV Electric Power Generation (건물일체형 태양광 시스템의 전력발전부 설계를 위한 SysML기반 시스템 모델링)

  • Lee, Seung-Joon;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.578-589
    • /
    • 2018
  • Building Integrated Photovoltaic (BIPV) system is a typical integrated system that simultaneously performs both building function and solar power generation function. To maximize its potential advantage, however, the solar photovoltaic power generation function must be integrated from the early conceptual design stage, and maximum power generation must be designed. To cope with such requirements, preliminary research on BIPV design process based on architectural design model and computer simulation results for improving solar power generation performance have been published. However, the requirements of the BIPV system have not been clearly identified and systematically reflected in the subsequent design. Moreover, no model has verified the power generation design. To solve these problems, we systematically model the requirements of BIPV system and study power generation design based on the system requirements model. Through the study, we consistently use the standard system modeling language, SysML. Specifically, stakeholder requirements were first identified from stakeholders and related BIPV standards. Then, based on the domain model, the design requirements of the BIPV system were derived at the system level, and the functional and physical architectures of the target system were created based on the system requirements. Finally, the power generation performance of the BIPV system was evaluated through a simulated SysML model (Parametric diagram). If the SysML system model developed herein can be reinforced by reflecting the conditions resulting from building design, it will open an opportunity to study and optimize the power generation in the BIPV system in an integrated fashion.