• 제목/요약/키워드: Potential Energy

검색결과 4,826건 처리시간 0.028초

Stability and Interconversion of Acetylcholine Conformers

  • Lee, Jae Shin;Park, Young Choon
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.2911-2916
    • /
    • 2014
  • The gas phase structures, energetics, and interconversion pathways of five lowest energy conformers of acetylcholine were examined employing the B3LYP, MP2, and CCSD(T) methods in conjunction with diverse basis sets including the correlation consistent aug-cc-pVDZ and aug-cc-pVTZ basis sets. It is found that use of adequate basis set containing proper polarization and diffuse functions capable of describing the floppy potential energy surface of acetylcholine is important in correctly predicting the relative stability of these conformers. The interconversion pathways and barrier heights between these conformers were elucidated by examining the potential energy surface for torsional motion, which also manifested the presence of chiral conformations of acetylcholine corresponding to the original conformations. On the basis of high level electronic energy calculations and thermal contribution analysis, four lowest energy conformers appear to be populated in the energy range of less than 1 kcal/mol at room temperature.

A SOLUTION TO THE PROBLEM WITH ABSORBED DOSE

  • Braby, Leslie A.
    • Nuclear Engineering and Technology
    • /
    • 제40권7호
    • /
    • pp.533-538
    • /
    • 2008
  • In some situations, for example at very low doses, in microbeam irradiation experiments, or around high energy heavy ion tracks, use of the absorbed dose to describe the energy transferred to the irradiated target can be misleading. Since absorbed dose is the expected value of energy per mass it takes into account all of the targets which do not have any energy deposition. In many situations that results in numerical values, in Joules per kg, which are much less than the energy deposited in targets that have been crossed by a charged particle track. This can lead to confusion about the biochemical processes that lead to the consequences of irradiation. There are a few alternative approaches to describing radiation that avoid this potential confusion. Examples of specific situations that can lead to confusion are given. It is concluded that using the particle radiance spectrum and the exposure time, instead of absorbed dose, to describe these irradiations minimizes the potential for confusion about the actual nature of the energy deposition.

Recovery of RE-less U From U/RE Ingot by Electrochemical Oxidation Process

  • Kim, Si Hyung;Yoon, Dalsung;Jang, Junhyuk;Kim, Taek-Jin;Paek, Seunwoo;Lee, Sung-Jai
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 한국방사성폐기물학회 2018년도 춘계학술논문요약집
    • /
    • pp.51-52
    • /
    • 2018
  • Selective oxidation of RE elements from the U/RE metal ingot was studied in this paper using electrochemical process. Constant potential of -1.7V was applied between anode and cathode, where the potential value corresponds to standard potentials between actinide and rare earth materials. When the current values approached to nearly 0 mA, the reaction was finished. It is confirmed from the EPMA analysis that only U part of the U/RE ingot was remained. The metal recovered to the zinc cathode was obtained through the distillation process and it is being chemically analyzed in the KAERI analytical laboratory.

  • PDF

An Investigation on Quantity of Unused Energy Using Temperature Difference Energy as Heat Source and Its Availability (온도차에너지를 열원으로 하는 미활용에너지의 부존량과 이용가능성에 관한 조사연구)

  • 박준택;장기창
    • Journal of Energy Engineering
    • /
    • 제11권2호
    • /
    • pp.106-113
    • /
    • 2002
  • While the demand for energy has shown a sharp increase recently, the supply seems to be limited by the fact that the conventional fossil fuel energy or nuclear energy has its own environmental problems such as, for example, global warming or nuclear waste disposal. To overcome such limited supply of energy, the utilization of natural thermal energy such as river water and sea water as well as treated sewage can be a substantial supplement. The potential use of the unused energy has become more and more feasible these days as the heat pump technology has been advanced. In the present study, the unused energy reserves are estimated on regional and monthly basis for each resource based on the method developed here in order to establish the base data for its utilization. The potential use of the unused energy is also discussed.

The Structure and Evolution of Renewable Energy Trade Networks in the RCEP Region: Application of SNA Method

  • Jinyan Tian;Qianli Wu;Congying Sun;Ziyang Liu
    • East Asian Economic Review
    • /
    • 제28권1호
    • /
    • pp.3-35
    • /
    • 2024
  • This paper utilizes social network analysis to examine the structural characteristics and trade dynamics of the renewable energy (hydropower, wind energy, and solar energy) trade network within the RCEP region from 2011 to 2020. The findings reveal: (1) The renewable energy trade network within the RCEP exhibits dynamism, heterogeneity, and an uneven development. The solar energy network is the most balanced and stable, while the wind energy network lags and shows marked fluctuations, with the hydropower network falling between these two. This demonstrates the diversity of energy trade within the region. (2) China, Singapore, and Japan are identified as the key exporting and importing countries, with Vietnam showing substantial growth potential. Individual analyses shed light on the stark disparities in trade status among nations, reflecting the diverse roles and future potential of member countries. (3) The QAP regression analysis reveals a significant influence of environmental pressure, particularly carbon dioxide emissions, on the renewable energy trade network. This study contributes to promoting environmental sustainability and energy security in the RCEP region and provides empirical evidence for global renewable energy trade strategies.

Design of a Monolithic Photoelectrochemical Tandem Cell for Solar Water Splitting with a Dye-sensitized Solar Cell and WO3/BiVO4 Photoanode

  • Chae, Sang Youn;Jung, Hejin;Joo, Oh-Shim;Hwang, Yun Jeong
    • Rapid Communication in Photoscience
    • /
    • 제4권4호
    • /
    • pp.82-85
    • /
    • 2015
  • Photoelectrochemical cell (PEC) is one of the attractive ways to produce clean and renewable energy. However, solar to hydrogen production via PEC system generally requires high external bias, because of material's innate electronic band potential relative to hydrogen reduction potential and/or charge separation issue. For spontaneous photo-water splitting, here, we design dye-sensitized solar cell (DSSC) and their monolithic tandem cell incorporated with a $BiVO_4$ photoanode. $BiVO_4$ has high conduction band edge potential and suitable band gap (2.4eV) to absorb visible light. To achieve efficient $BiVO_4$ photoanode system, electron and hole mobility should be improved, and we demonstrate a tandem cell in which $BiVO_4/WO_3$ film is connected to cobalt complex based DSSC.

Large deflection analysis of orthotropic, elliptic membranes

  • Chucheepsakul, Somchai;Kaewunruen, Sakdirat;Suwanarat, Apiwat
    • Structural Engineering and Mechanics
    • /
    • 제31권6호
    • /
    • pp.625-638
    • /
    • 2009
  • Applications of membrane mechanisms are widely found in nano-devices and nano-sensor technologies nowadays. An alternative approach for large deflection analysis of the orthotropic, elliptic membranes - subject to gravitational, uniform pressures often found in nano-sensors - is described in this paper. The material properties of membranes are assumed to be orthogonally isotropic and linearly elastic, while the principal directions of elasticity are parallel to the coordinate axes. Formulating the potential energy functional of the orthotropic, elliptic membranes involves the strain energy that is attributed to inplane stress resultant and the potential energy due to applied pressures. In the solution method, Rayleigh-Ritz method can be used successfully to minimize the resulting total potential energy generated. The set of equilibrium equations was solved subsequently by Newton-Raphson. The unparalleled model formulation capable of analyzing the large deflections of both circular and elliptic membranes is verified by making numerical comparisons with existing results of circular membranes as well as finite element solutions. The results are found in excellent agreements at all cases. Then, the parametric investigations are given to delineate the impacts of the aspect ratios and orthotropic elasticity on large static tensions and deformations of the orthotropic, elliptic membranes.

Response Properties of Acupuncture Stimulation by Meridian Electrical Potential Measurement (침구경략전위 측정에 의한 침 자극 반응 특성)

  • Ryu, Yeon-Hang;Jung, Byung-Jo;Lee, Yong-Heum
    • Journal of Biomedical Engineering Research
    • /
    • 제29권5호
    • /
    • pp.408-413
    • /
    • 2008
  • Human body has a complete left and right symmetry structure, and the left and right balance by Yin and Yang. When the balance is broken, the left and right Meridian becomes abnormal condition. Acupuncture is a kind of therapy to recover from energy unbalance of the left and right Meridian to a new balance condition. In the study, we observed the electric potential along the stomach meridian (ST) in order to verify the energy consensus phenomenon by transportation of bio-energy between operator and subject during acupuncture. The acupuncture effects on opposite meridian site were investigated by comparing the electric potentials between the right and left ST sites. Meridian electrical potentials (MEPs) between operator and subject were simultaneously generated during the acupuncture and the polarity of MEPs was opposite. The results might imply the bio-energy transportation between operator and subject. In addition, we observed three different patterns of MEPs on both ST sites which might represent the condition of the related meridians because meridians in the body are organically interconnected.

Electrochemical Behavior for a Reduction of Uranium Oxide in a $LiCl-Li_{2}O$ Molten Salt with an Integrated Cathode assembly

  • Park, Sung-Bin;Park, Byung-Heung;Seo, Chung-Seok;Jung, Ki-Jung;Park, Seong-Won
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 한국방사성폐기물학회 2005년도 Proceedings of The 6th korea-china joint workshop on nuclear waste management
    • /
    • pp.39-50
    • /
    • 2005
  • Electrolytic reduction of uranium oxide to uranium metal was studied in a $LiCl-Li_{2}O$ molten salt system. The reduction mechanism of the uranium oxide to a uranium metal has been studied by means of a cyclic voltammetry. Effects of the layer thickness of the uranium oxide and the thickness of the MgO on the overpotential of the cathode and the anode were investigated by means of a chronopotentiometry. From the cyclic voltamograms, the decomposition potentials of the metal oxides are the determining factors for the mechanism of the reduction of the uranium oxide in a $LiCl-3\;wt{\%} Li_{2}O$ molten salt and the two mechanisms of the electrolytic reduction were considered with regards to the applied cathode potential. In the chronopotentiograms, the exchange current and the transfer coefficient based on the Tafel behavior were obtained with regard to the layer thickness of the uranium oxide which is loaded into the porous MgO membrane and the thickness of the porous MgO membrane. The maximum allowable currents for the changes of the layer thickness of the uranium oxide and the thickness of the MgO membrane were also obtained from the limiting potential which is the decomposition potential of LiCl.

  • PDF

Assessment of Distributed and Dynamic Potential of Photovoltaic Systems in Urban Areas (태양광 발전 시스템의 시공간적 잠재성 평가 소프트웨어 개발)

  • Choi, Yosoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.59.2-59.2
    • /
    • 2011
  • This study presents a new method for coupling ArcGIS (popular GIS software) with TRaNsient SYstems Simulation (TRNSYS, reference software for researchers and engineers around the world) to use capabilities of the 4 and 5-parameter PV array performance models within the ArcGIS environment. Using the validated and industry-proven solar energy simulation models implemented in TRNSYS and other built-in ArcGIS functionalities, dynamic characteristics of distributed PV potential in terms of hourly, daily or monthly power outputs can be investigated with considerations of diverse options in selecting and mounting PV panels. In addition, the proposed method allows users to complete entire procedures in a single framework (i.e., a preliminary site survey using 3D building models, shading analyses to investigate usable rooftop areas with considerations of different sizes and shapes of buildings, dynamic energy simulation to examine the performances of various PV systems, visualization of the simulation results to understand spatially and temporally distributed patterns of PV potential). Therefore tedious tasks for data conversion among multiple softwares can be significantly reduced or eliminated. While the programming environment of TRNSYS is proprietary, the redistributable executable, simulation kernel and simulation engine of TRNSYS can be freely distributed to end-users. Therefore, GIS users who do not have a license of TRNSYS can also use the functionalities of solar energy simulation models within ArcGIS.

  • PDF