• Title/Summary/Keyword: Potato Disease

Search Result 374, Processing Time 0.032 seconds

Bacillus vallismortis Strain EXTN-1 Mediated Systemic Resistance against Potato virus Y and X in the Field

  • Park, Kyung-Seok;Paul, Diby;Ryu, Kyung-Ryl;Kim, Eun-Yung;Kim, Yong-Ki
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.360-363
    • /
    • 2006
  • Efficacy of plant growth promoting rhizobacteria(PGPR) Bacillus vallismortis strain EXTN-1 has been proved in eliciting induced systemic resistance(ISR) in several crops. The present paper described the beneficial effects of EXTN-1 in potato as increase in yield and chlorophyll content, and plant protection against Potato Virus Y and X(PVY & PVX). EXTN-1 induced systemic resistance to the plants resulting in significant disease suppression in the field. Also the plants under treatment with EXTN-1 had higher chlorophyll content. The bacterized plants had significantly higher yields over the untreated control plants. The strain induced activation of defense genes, PR-1a and PDF 1.2 in transgenic tobacco model, which indicated the possible role of both SA, and JA pathways in EXTN-1 mediated plant protection against crop diseases.

Control of Potato Virus Y (PVY-VN) with Mineral Oil Treatment in Tobacco Burley 21 Fields (담배(Burley 21) 포장에서 mineral oil 처리에 의한 감자바이러스Y(PVY-VN) 방제)

  • 채순용;김상석;김영호;박은경
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.23 no.2
    • /
    • pp.115-122
    • /
    • 2001
  • The effect of mineral oil treatment in Burley 21 tobacco field on the control of potato virus Y(PVY-VN) mostly transmitted by green peach apid(Myzus persicae Sulzer) in nature was studied and the virus infection in some plants including potato, pepper, bramble, radish, etc near the tobacco fields as a virus infection source was tested by capillary tube precipitatioin test with PVY-antibody and bioassay in Xanthi-nc tobacco. The main source of PVY-VN infection in tobacco field in korea was potato(ca. 40% of test plants infected). Pepper and bramble were also infected by PVY-VN. The control level of PVY-VN infection by treatment of 0.75% liquid mineral oil with 3 % nonionic emulsifier to the plants was 84.8 % in case of the artificial transfection with a infected apterous aphid in laboratory. However, the reduction of PVY-VN disease severity in tobacco fields treated with mineral oil at late June was only 35.5%. These results suggest that mineral oil treatment is not so effective for the protection of aphid-born virus(PVY - VN) infection in tobacco fields.

  • PDF

Infection Structures on the Infected Leaves of Potato Pre-inoculated with Bacterial Strains and DL-3-amino Butyric Acid after Challenge Inoculation with Phytophthora infestans

  • Kim, Hyo-Jeong;Jeun, Yong-Chull
    • The Plant Pathology Journal
    • /
    • v.23 no.3
    • /
    • pp.203-209
    • /
    • 2007
  • Infection structures were observed using a fluorescence microscope at the penetration sites on the leaves of potato plants pre-inoculated with the bacterial strains Pseudomonas putida TRL2-3, Micrococcus luteus TRK2-2, and Flexibacteraceae bacterium MRL412, which mediated an induced systemic resistance on potato plants against late blight disease caused by Phytophthora infestans. In order to compare the infection structures on the leaves expressing systemic acquired resistance, the leaves of potato plants pre-treated with DL-3-amino butyric acid (BABA) were also observed after challenge inoculation with the same pathogen. The infection structures were investigated. The total number of germination and appressorium formation of P. infestans were counted. Furthermore, the frequencies of fluorescent epidermal cells at the penetration sites, which indicate a defense response of plant cell, were estimated. There were no differences on the germination rates of the fungal cysts among the untreated control, BABA pre-treated, and bacterial strains pre-inoculated plants. However, appressorium formation was slightly decreased on the leaves of BABA pre-treated plants compared to those of untreated as well as bacterial strains pre-inoculated plants. Furthermore, the frequencies of fluorescent cells of BABA pre-treated and bacterial strains pre-inoculated were higher than that of untreated plants, indicating an active defense reaction of the host cells against the fungal attack. On the other hand, the pre-treatment with BABA caused a stronger fluorescent of epidermal cells at the penetration sites compared to the pre-inoculation with the bacterial strains. Interestingly, the frequency of fluorescent cells by BABA, however, was lower than that by the bacterial strains. Based on the results it is suggested that the infection structures showing resistance reaction on the leaves of potato plants were different between by pre-inoculation with bacterial strains and by pre-treatment with BABA against the late blight pathogen.

Proteome Analysis of Disease Resistance against Ralstonia solanacearum in Potato Cultivar CT206-10

  • Park, Sangryeol;Gupta, Ravi;Krishna, R.;Kim, Sun Tae;Lee, Dong Yeol;Hwang, Duk-ju;Bae, Shin-Chul;Ahn, Il-Pyung
    • The Plant Pathology Journal
    • /
    • v.32 no.1
    • /
    • pp.25-32
    • /
    • 2016
  • Potato is one of the most important crops worldwide. Its commercial cultivars are highly susceptible to many fungal and bacterial diseases. Among these, bacterial wilt caused by Ralstonia solanacearum causes significant yield loss. In the present study, integrated proteomics and genomics approaches were used in order to identify bacterial wilt resistant genes from Rs resistance potato cultivar CT-206-10. 2-DE and MALDI-TOF/TOF-MS analysis identified eight differentially abundant proteins including glycine-rich RNA binding protein (GRP), tomato stress induced-1 (TSI-1) protein, pathogenesis-related (STH-2) protein and pentatricopeptide repeat containing (PPR) protein in response to Rs infection. Further, semi-quantitative RT-PCR identified up-regulation in transcript levels of all these genes upon Rs infection. Taken together, our results showed the involvement of the identified proteins in the Rs stress tolerance in potato. In the future, it would be interesting to raise the transgenic plants to further validate their involvement in resistance against Rs in potato.

Plants Disease Phenotyping using Quinary Patterns as Texture Descriptor

  • Ahmad, Wakeel;Shah, S.M. Adnan;Irtaza, Aun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3312-3327
    • /
    • 2020
  • Plant diseases are a significant yield and quality constraint for farmers around the world due to their severe impact on agricultural productivity. Such losses can have a substantial impact on the economy which causes a reduction in farmer's income and higher prices for consumers. Further, it may also result in a severe shortage of food ensuing violent hunger and starvation, especially, in less-developed countries where access to disease prevention methods is limited. This research presents an investigation of Directional Local Quinary Patterns (DLQP) as a feature descriptor for plants leaf disease detection and Support Vector Machine (SVM) as a classifier. The DLQP as a feature descriptor is specifically the first time being used for disease detection in horticulture. DLQP provides directional edge information attending the reference pixel with its neighboring pixel value by involving computation of their grey-level difference based on quinary value (-2, -1, 0, 1, 2) in 0°, 45°, 90°, and 135° directions of selected window of plant leaf image. To assess the robustness of DLQP as a texture descriptor we used a research-oriented Plant Village dataset of Tomato plant (3,900 leaf images) comprising of 6 diseased classes, Potato plant (1,526 leaf images) and Apple plant (2,600 leaf images) comprising of 3 diseased classes. The accuracies of 95.6%, 96.2% and 97.8% for the above-mentioned crops, respectively, were achieved which are higher in comparison with classification on the same dataset using other standard feature descriptors like Local Binary Pattern (LBP) and Local Ternary Patterns (LTP). Further, the effectiveness of the proposed method is proven by comparing it with existing algorithms for plant disease phenotyping.

Superficial Tuber Necrosis in Potato Cultivar 'Haryeong' Caused by Potato virus Y (Potato virus Y에 의한 하령 감자의 괴경 괴저증상)

  • Lee, Young-Gyu;Kim, Jeom-Soon;Kim, Ju-Il;Park, Young-Eun
    • Research in Plant Disease
    • /
    • v.19 no.2
    • /
    • pp.90-94
    • /
    • 2013
  • Potato cv. 'Haryeong' was bred with high solids, resistance to late blight and good culinary quality. It has been registered as new potato variety in 2005. Tuber necrosis symptoms such as severe superficial necrosis, raised surface lesions and ringed necrotic areas were found in tubers of 'Haryeong' during storage of seed potatoes in 2010. Potato virus Y (PVY) was detected from these symptomatic tubers by the analysis of RT-PCR using a primer set specific to coat protein gene of PVY. The nucleotide sequence of RT-PCR product ($PVY^{Hkr}$) was determined and compared to those of other strains, such as $PVY^{Kor}$, $PVY^N$, $PVY^{NTN}$, $PVY^O$, and $PVY^C$ registered in GeneBank. The result showed that $PVY^{Hkr}$ was exactly the same as $PVY^{Kor}$, Korean isolate reported in 2005, except two nucleotides. To verify the PVY was responsible for the tuber necrosis symptoms shown in the tubers of 'Haryeong', a bioassay was done using two viruses (PVY and Potato leafroll virus) and five potato cultivars ('Haryeong', 'Superior', 'Atlantic', 'Dejima', and 'Chubaek'). As expected, the same necrosis symptom appeared in tubers of 'Haryeong' infected with PVY only during the storage period.

Tolerance to Potato Soft Rot Disease in Transgenic Potato Expressing Soybean Ferritin Gene (대두 철분결합단백질 유전자 발현 형질전환 감자의 감자무름병 방어 증진효과)

  • Bae, Shin-Chul;Yeo, Yun-Soo;Heu, Sung-Gi;Hwang, Duk-Ju;Byun, Myung-Ok;Go, Seung-Joo
    • Journal of Plant Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.229-233
    • /
    • 2002
  • Ferritin is ubiquitous in bacteria, animals and plants. Ferritin is thought to play two main roles in living cells to provide iron for the synthesis of iron protein such as ferretoxin and cytochromes and to prevent damage from radicals produced by iron/dioxygen interaction. To enhance the resistance of potato to Erwinia carotovora, the soybean ferritin gene was introduced into the potato either under CaMV 35S or hsr203J promoter. Potato transgenic plants were screened by PCR analysis using specific primers to the ferritin gene. Expression of ferritin gene under CaMV 35S and hsr203J promoter in potato transgenic plants was confirmed by northern blot analysis. hsr203J promoter known to pathogen inducible in tobacco drives the induction upon Phytophthora infestan in potato and the transcript level of ferritin gene was extremely high after 24 hours post inoculation. One of transformants under CaMV 35S promoter was increased 2.5 fold than untransformant. Each one of transgenic potato containing gene promoter CaMV 35S and hsr203J-ferrtin fusion exhibited tolerance against potato soft rot.

Effect of Crop Rotation on Control of Clubroot Disease of Chinese Cabbage Caused by Plasmodiophora brassicae (윤작작물 재배에 의한 배추 뿌리혹병 방제 효과)

  • Kim, Jeom-Soon;Lee, Jeong-Tae;Lee, Gye-Jun
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.242-247
    • /
    • 2009
  • To select rotation crops for control of clubroot of Chinese cabbage, potato, corn, soybean, onion and groundsel were planted in the field infected with clubroot pathogen (Plasmodiophora brassicae) in highland area in 2000. In comparison of economical efficiency among rotation crops, potato and onion gained about 16.9 and 14.9 times higher, respectively, than successive cultivation of Chinese cabbage. Resting spore densities of Plasmodiophora brassicae after harvesting rotation crops were in the range of $0.3{\sim}1.2{\times}10^3/g$ soil in all cultivated soils with rotation crops while that of successive Chinese cabbage cultivation soil was very high as much as $89.3{\times}10^3/g$ soil. And disease severity of Chinese cabbage clubroot was 4.9, 20.2, 24.4, 25.1 and 27.8% in onion, soybean, potato, corn, and groundsel cultivation plot, respectively, while that of successive Chinese cabbage cultivation plot was very high as 77.8%. Effect of rotation period of onion, potato, soybean on disease control was investigated from 2002 to 2005. Resting spore densities of Plasmodiophora brassicae after cultivating rotation crops were decreased until $2^{nd}$ year and maintained low density at $3^{rd}$ year in all plots, while that of successive Chinese cabbage cultivation plot was increased 2.6 to 23.6 times for three years. When Chinese cabbage was rotation-cultivated with potato, soybean and onion for three years, disease severities of Chinese cabbage clubroot decreased 92 to 4.4%, 72 to 10.4% and 72 to 12.2%, respectively, while that of successive Chinese cabbage cultivation plot maintained 100%. As the rotation period increased, the yields of Chinese cabbage increased, while that of successive Chinese cabbage cultivation plot decreased. At $3^{rd}$ year, Chinese cabbage with high quality could be much more produced 2,205, 2,493 and 2,476 g in potato, soybean and onion cultivation plot, respectively, than 95 g in successive Chinese cabbage cultivation plot.

Antioxidant and Neuronal Cell Protective Effect of Purple Sweet Potato Extract (자색고구마 추출물의 항산화 효과 및 신경세포 보호효과)

  • Kwak, Ji-Hyun;Choi, Gwi-Nam;Park, Ju-Hee;Kim, Ji-Hye;Jeong, Hee-Rok;Jeong, Chang-Ho;Heo, Ho-Jin
    • Journal of agriculture & life science
    • /
    • v.44 no.2
    • /
    • pp.57-66
    • /
    • 2010
  • The antioxidant and neuronal cell protective effects of water extract from purple sweet potato were investigated. The total phenolics and monomeric anthocyanin contents of purple sweet potato extract were 44.25 mg/g and 2,394 mg/L, respectively. The antioxidant activities of purple sweet potato extract were evaluated using various antioxidant tests, including 1,1-diphenyl- 2-picrylhydrazyl (DPPH), 2,2'-azino- bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activities, ferric reducing/antioxidant power (FRAP) and reducing power. In these assays, the extract of purple sweet potato presented significant radical scavenging activities, FRAP, and reducing power in a dose-dependent manner. MTT {3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl- tetrazoliumbromide} reduction assay showed significantly increase in cell viability when PC12 cells were pretreated with purple sweet potato extract. Because oxidative stress is also known to increase neuronal cell membrane breakdown, we further investigated by lactate dehydrogenase (LDH) and neutral red uptake assay. Purple sweet potato extract inhibited oxidative stress-induced membrane damage in neuronal cells. Therefore, these data results demonstrated that water extract of purple sweet potato have antioxidant activity and neuronal cell protective effect thus it has great potential as a natural source for human health.

A Novel Recombined Potato virus Y Isolate in China

  • Han, Shuxin;Gao, Yanling;Fan, Guoquan;Zhang, Wei;Qiu, Cailing;Zhang, Shu;Bai, Yanju;Zhang, Junhua;Spetz, Carl
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.382-392
    • /
    • 2017
  • This study reports the findings of a distinct Potato virus Y (PVY) isolate found in Northeast China. One hundred and ten samples (leaves and tubers) were collected from potato plants showing mosaic symptoms around the city of Harbin in Heilongjiang province of China. The collected tubers were planted and let to grow in a greenhouse. New potato plants generated from these tubers showed similar symptoms, except for one plant. Subsequent serological analyses revealed PVY as the causing agent of the disease. A novel PVY isolate (referred to as HLJ-C-44 in this study) was isolated from this sample showing unique mild mosaic and crisped leaf margin symptoms. The complete genome of this isolate was analyzed and determined. The results showed that HLJ-C-44 is a typical PVY isolate. Phylogenetic analysis indicated that this isolate belongs to the N-Wi strain group of PVY recombinants ($PVY^{N-Wi}$) and also shared the highest overall sequence identity (nucleotide and amino acid) with other members of this strain group. However, recombination analysis of isolate HLJ-C-44 revealed a recombination pattern that differed from that of other $PVY^{N-Wi}$ isolates. Moreover, biological assays in four different potato cultivars and in Nicotiana tabacum also revealed a different phenotypic response than that of a typical $PVY^{N-Wi}$ isolate. This data, combined, suggest that HLJ-C-44 is a novel PVY recombinant with distinct biological properties.