• Title/Summary/Keyword: Potato Disease

Search Result 374, Processing Time 0.041 seconds

Control Efficacy of Bacillus velezensis AFB2-2 against Potato Late Blight Caused by Phytophthora infestans in Organic Potato Cultivation

  • Kim, Min Jeong;Shim, Chang Ki;Park, Jong-Ho
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.580-595
    • /
    • 2021
  • Although late blight is an important disease in ecofriendly potato cultivation in Korea, it is highly dependent on the use of eco-friendly agricultural materials and the development of biological control technology is low. It is a necessary to develop an effective biocontrol agent to inactivate late blight in the field. AFB2-2 strain is a gram-positive with peritrichous flagella. It can utilize 20 types of carbon sources, like L-arabinose, and D-trehalose at 35℃. The optimal growth temperature of the strain is 37℃. It can survive at 20-50℃ in tryptic soy broth. The maximum salt concentration tolerated by AFB2-2 strain is 7.5% NaCl. AFB2-2 strain inhibited the mycelial growth of seven plant pathogens by an average inhibitory zone of 10.2 mm or more. Among the concentrations of AFB2-2, 107 cfu/ml showed the highest control value of 85.7% in the greenhouse. Among the three concentrations of AFB2-2, the disease incidence and severity of potato late blight at 107 cfu/ml was lowest at 0.07 and 6.7, respectively. The nucleotide sequences of AFB2-2 strain were searched in the NCBI GenBank; Bacillus siamensis strain KCTC 13613, Bacillus velezensis strain CR-502, and Bacillus amyloliquefaciens strain DSM7 were found to have a genetic similarity of 99.7%, 99.7%, and 99.5%, respectively. The AFB2-2 strain was found to harbor the biosynthetic genes for bacillomycin D, iturin, and surfactin. Obtained data recommended that the B. velezensis AFB2-2 strain could be considered as a promising biocontrol agent for P. infestans in the field.

Potato Pests Observed in Seed Potatoes, North Korea during 2001 to 2005 (북한 씨감자 생산에서의 병해충 발생(2001-2005))

  • Hahm Young-Il
    • Research in Plant Disease
    • /
    • v.12 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • During visiting North Korea from 2001 to 2005, I have had a few chances to observe and discuss several North Korean scientists for the seed production program and also, the occurrence of potato pests. Healthy seed production, especially in the early generations, e.g. the production of virus-free starting materials as well as in vitro pre-basic seeds (G0) by hydroponics and basic seeds under netted houses according to her new national seed potato program of Academy of Agricultural Science, Pyongyang, North Korea, has been done well so far. Some major pests occurred, however, in the early generations such as pre-basic seed (G0) in greenhouse, basic seed (G1) in screenhouse, foundation seed-I (G2) and even ware potatoes in the fields are Phytopitthora infestans, Spongospora subterrunea, Ralstonia solanacearum, Pythium spp. and some viruses such as Potato virus X, Potato virus Y, Potato leafroll virus, and also larger potato ladybeetle, greenhouse whitefly and potato tuber moth. Therefore, the success of healthy seed production in North Korea will be thoroughly depended on the pest control and the multiplication of virus-free seed stocks in the isolated areas, especially where no infected potatoes are grown.

Effect of Alternaria solani Exudates on Resistant and Susceptible Potato Cultivars from Two Different pathogen isolates

  • Shahbazi, Hadis;Aminian, Heshmatollah;Sahebani, Navazollah;Halterman, Dennis
    • The Plant Pathology Journal
    • /
    • v.27 no.1
    • /
    • pp.14-19
    • /
    • 2011
  • Early blight of potato, caused by Alternaria solani, is a ubiquitous disease in many countries around the world. Our previous screening of several Iranian potato cultivars found that significant variation in resistance phenotypes exists between two cultivars: resistant 'Diamond' and susceptible 'Granula'. Our previous analysis of five different pathogen isolates also identified varying degrees of aggressiveness regardless of the host cultivar. Here, a bioassay was used to study the role of liquid culture exudates produced in vitro on pathogenicity and elicitation of disease symptomology in seedlings as well as detached leaves. Responses of host genotypes to the exudates of the two A. solani isolates were significantly different. Detached leaves of the resistant cultivar 'Diamond' elicited fewer symptoms to each isolate when compared to the susceptible cultivar 'Granula'. Interestingly, the phytotoxicity effect of the culture filtrate from the more aggressive isolate A was higher than from isolate N suggesting an increased concentration or strength of the toxins produced. Our results are significant because they indicate a correlation between symptoms elicited by A. solani phytotoxins and their aggressiveness on the host.

Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications

  • Khan, Raham Sher;Sjahril, Rinaldi;Nakamura, Ikuo;Mii, Masahiro
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • Potato (Solanum tuberosum L.), one of the most important food crops, is susceptible to a number of devastating fungal pathogens in addition to bacterial and other pathogens. Producing disease-resistant cultivars has been an effective and useful strategy to combat the attack of pathogens. Potato was transformed with Agrobacterium tumefaciens strain EHA101 harboring chitinase, (ChiC) isolated from Streptomyces griseus strain HUT 6037 and bialaphos resistance (bar) genes in a binary plasmid vector, pEKH1. Polymerase chain reaction (PCR) analysis revealed that the ChiC and bar genes are integrated into the genome of transgenic plants. Different insertion sites of the transgenes (one to six sites for ChiC and three to seven for bar) were indicated by Southern blot analysis of genomic DNA from the transgenic plants. Expression of the ChiC gene at the messenger RNA (mRNA) level was confirmed by Northern blot analysis and that of the bar gene by herbicide resistance assay. The results obviously confirmed that the ChiC and bar genes are successfully integrated and expressed into the genome, resulting in the production of bialaphos-resistant transgenic plants. Disease-resistance assay of the in vitro and greenhouse-grown transgenic plants demonstrated enhanced resistance against the fungal pathogen Alternaria solani (causal agent of early blight).

Biocontrol Activity of Aspergillus terreus ANU-301 against Two Distinct Plant Diseases, Tomato Fusarium Wilt and Potato Soft Rot

  • Choi, Hyong Woo;Ahsan, S.M.
    • The Plant Pathology Journal
    • /
    • v.38 no.1
    • /
    • pp.33-45
    • /
    • 2022
  • To screen antagonistic fungi against plant pathogens, dual culture assay (DCA) and culture filtrate assay (CFA) were performed with unknown soil-born fungi. Among the different fungi isolated and screened from the soil, fungal isolate ANU-301 successfully inhibited growth of different plant pathogenic fungi, Colletotrichum acutatum, Alternaria alternata, and Fusarium oxysporum, in DCA and CFA. Morphological characteristics and rDNA internal transcribed spacer sequence analysis identified ANU-301 as Aspergillus terreus. Inoculation of tomato plants with Fusarium oxysporum f. sp. lycopersici (FOL) induced severe wilting symptom; however, co-inoculation with ANU-301 significantly enhanced resistance of tomato plants against FOL. In addition, culture filtrate (CF) of ANU-301 not only showed bacterial growth inhibition activity against Dickeya chrysanthemi (Dc), but also demonstrated protective effect in potato tuber against soft rot disease. Gas chromatography-tandem mass spectrometry analysis of CF of ANU-301 identified 2,4-bis(1-methyl-1-phenylethyl)-phenol (MPP) as the most abundant compound. MPP inhibited growth of Dc, but not of FOL, in a dose-dependent manner, and protected potato tuber from the soft rot disease induced by Dc. In conclusion, Aspergillus terreus ANU-301 could be used and further tested as a potential biological control agent.

Draft genome sequence of Streptomyces sp. P3 isolated from potato scab diseased tubers (감자 더뎅이병 이병괴경으로부터 분리한 Streptomyces sp. P3 균주의 유전체 해독)

  • Kang, Min Kyu;Park, Duck Hwan
    • Korean Journal of Microbiology
    • /
    • v.54 no.2
    • /
    • pp.158-160
    • /
    • 2018
  • Streptomyces sp. P3 was isolated from potato scab diseased tubers in Pyeongchang, Gangwon-do, Republic of Korea in 2017. Here, we report the draft genome sequences of P3 with 9,851,971 bp size (71.2% GC content) of the chromosome. The genome comprises 8,548 CDS, 18 rRNA and 66 tRNA genes. Although strain P3 did not show pathogenicity both potato tuber assay and radish seedling assay, it possesses tomatinase (tomA) gene among conserved pathogenicity-related genes in well characterized pathogenic Streptomyces. Thus, the genome sequences determined in this study will be useful to understand for pathogenic evolution in Streptomyces species, which already adapted to potato scab pathogens.

Antiserum Preparation of Recombinant Sweet Potato Latent Virus-Lotus (SPLV-Lotus) Coat Protein and Application for Virus-Infected Lotus Plant Detection

  • He, Zhen;Dong, Tingting;Chen, Wen;Wang, Tielin;Gan, Haifeng;Li, LiangJun
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.651-657
    • /
    • 2020
  • Lotus is one of the most important aquatic vegetables in China. Previously, we detected sweet potato latent virus from lotus (SPLV-lotus) and found that it has highly significant sequence diversity with SPLV-sweet potato isolates (SPLV-sp). Here, we developed serological methods for the detection of SPLV-lotus in Chinese lotus cultivation areas. Based on the high sensitivity of SPLV-lotus coat protein antiserum, rapid, sensitive and large-scale diagnosis methods of enzyme-linked immunosorbent assay (ELISA) and dot blot in lotus planting area were developed. The established ELISA and dot blot diagnostic methods can be used to detect SPLV-lotus from samples successfully. And our results also showed that the SPLV-lotus and sweet potato isolates appeared clearly distinction in serology. Our study provides a high-throughput, sensitive, and rapid diagnostic method based on serology that can detect SPLV on lotus, which is suggested to be included in viral disease management approach due to its good detection level.

Isolation and Characterization of Bacteriophages Infecting Ralstonia solanacearum from Potato Fields

  • Lee, Jihyun;Park, Tae-Ho
    • Research in Plant Disease
    • /
    • v.22 no.4
    • /
    • pp.236-242
    • /
    • 2016
  • Bacterial wilt caused by Ralstonia solanacearum is one of the most devastating diseases in major Solanaceae crops. The pathogen is easily disseminated and survives for many years in plant farming system. Although chemicals are applied to control the disease, they are of limited efficacy and cause several problems. Therefore, the use of phage therapy has been suggested to control the disease as a biological agent. In this study, we discovered bacteriophages lysing diverse Ralstonia isolates from plant and soil samples obtained from the potato cultivated field in Jeju. Three times repeated pickings of plaques resulted in obtaining 173 single phages showing diverse spectrum of host-specificity. With the results, 12 core phages were selected and dendrogram was generated. Genetic diversity of the selected phages was also confirmed by AFLP (Amplified Fragment of Length Polymorphism) fingerprinting. The stability of the phages was investigated in various temperatures and various conditions of pH in vitro. The phages were stable at $16^{\circ}C-44^{\circ}C$ and pH 6-10. Morphological characterization of the phages revealed they were all classified into the Podoviridae, but had diverse head sizes. The results of this research will contribute to control the disease and further researches regarding genetic and molecular aspects will facilitate understanding phage and bacteria interaction.

Survey of Disease Occurrence in Major Tobacco Fields of Korea, 2011 (2011년 한국 연초산지의 병해 발생상황)

  • Jun, Mi-Hyun;Lee, Young-Keun
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Major diseases of tobacco plants were surveyed throughout the Korea in 2011. Mosaic, bacterial wilt and hallow stalk were most severe during the harvest season on not only flue-cured tobacco plants but also burley tobacco plants. On flue-cured tobacco plants, mosaic caused by potato virus Y were more severe than those by tobacco mosaic virus or cucumber mosaic virus. The mosaic caused by potato virus Y was severe at Yeongwol and Chungju. On burley tobacco plants, mosaic were more severe at Jeongeup and Gochang than those at Chungnam and Jeonnam. A negative correlation between the mosaic incidence and the precipitation was recognized. On the other hand, there was a positive correlation between the incidence of hallow stalk incidence of flue-cured tobacco plants in harvesting stage and the precipitation during June was recognized significantly.

Effect of Applying Soil Amendments on Potato Scab Prevention in Volcanic Ash Soil with Continuous Cropping System (토양개량제시용에 따른 화산회토양 감자 연작지 더뎅이병 억제 효과)

  • Joa, Jae-Ho;Moon, Doo-Kyung;Koh, Sang-Wook;Son, Daniel
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.719-730
    • /
    • 2014
  • This study was conducted to select proper soil amendments in order to reduce the occurrence of potato scab and maintaining soil health by applications of dolomitic lime, sulfur, potassium sulfate, shell meal fertilizer, silicate fertilizer, lime nitrogen and ammonium sulfate fertilizer in different pH levels of volcanic ash soil with continuous cultivation of potato. In potassium sulfate-applied plot with a low soil pH, the incidence rate and disease severity of scab were lowest at 84.4% and 28.4%, respectively. Those were lowest among the treatments. Value of potato scab control was 12.3% and marketable yield of potato was highest at 93.2%. In lime nitrogen-applied plot (60 kg/10a), the incidence rate was low at 38.3%, and control value was 23.8% and marketable yield of potato was high at 66.3%. In relatively higher pH soils, the incidence rate of scab was lowest at 38.3% in the lime nitrogen-applied plot (60 kg/10a). Value of potato scab control was 23.8%, which was four times higher than that in sulfur-applied plot. Marketable yield of potato was highest at 66.3% in the lime nitrogen-applied plot. In the lime nitrogen plot infected with potato scab pathogen such as S. acidiscabies and S. scabiei were remarkably lower than other soil amendments at 2.5, 5, and 10 g/L concentrations of lime nitrogen using Glucose Yeast Malt (GYM) medium. In conclusion, this study suggests that potassium sulfate application in low pH soil (less than pH 5) and lime nitrogen application in relatively higher pH soil (more than pH 6) before potato seeding might be helpful to reduce the occurrence of potato scab.