• Title/Summary/Keyword: Potato Disease

Search Result 374, Processing Time 0.028 seconds

Isolation of Rhizobacteria in Jeju Island Showing Anti-Fungal Effect against Fungal Plant Pathogens

  • Lee, Chung-Sun;Kim, Ki-Deok;Hyun, Jae-Wook;Jeun, Yong-Chull
    • Mycobiology
    • /
    • v.31 no.4
    • /
    • pp.251-254
    • /
    • 2003
  • To select active bacterial strains to control plant diseases, 57 bacterial strains were isolated from the rhizosphere of the plants growing in various areas such as coast, middle and top of Halla Mountain in Jeju Island. Anti-fungal effect of isolated bactrial strains was tested in vitro by incubating in potato dextrose agar with isolates of four fungal plant pathogens Rhizoctonia solani, Fusarium oxysporum, Colletotrichum gloeosporioides and C. orbiculare, respectively. Thirty-four bacterial strains inhibited the hyphal growth of the plant pathogens, from which 17 strains inhibited one of the tested fungi, 10 strains two fungi, six strains three and a strain TRL2-3 inhibited all of the tested fungi. Some bacterial strains could inhibit weakly the hyphal growth of the plant pathogens, whereas some did very strongly with apparent inhibition zone between the plant pathogens and bacterial strains indicating the unfavorable condition for hyphal growth. Although there was no apparent inhibition zone, some bacterial strains showed a strong suppression of hyphal growth of plant pathogens. Especially, the inhibition by TRL2-3 was remarkably strong in all cases of the tested plant pathogens in this study that could be a possible candidate for biological control of various plant diseases.

Antagonism and Structural Identification of Antifungal Compound from Chaetomium cochliodes against Phytopathogenic Fungi

  • Kang, Jae Gon;Kim, Keun Ki;Kang, Kyu Young
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.146-150
    • /
    • 1999
  • As a part of the integrated disease system in greenhouse, an antifungal fungus(AF1) was isolated from greenhouse soil. It exhibited strong inhibitory activites against Pythium ultimum, Phytophtora capsici, Rhizoctonia solani, Botrytis cinerea, and Fusarium oxysporum based on dual culture on 1/5 strength of potato dextrose agar between antagonistic fungus and several plant pathogens. The antagonistic fungus was identified as Chaetomium cochliodes, based on morphological characteristics; the body of the perithecium bears straight or slightly wavy, unbranched hairs, whilst the apex bears a group of spirally coiled hairs. To investigate antagonistic principles, antifungal compound was extracted and fractionated by different solvent systems. An antifungal compound was isolated as pure crystal from is culture filtrate using organic solvent extraction and column chromatography, followed by preparative thin layer chromatography. The chemical structure of the purified antifungal compound was identified as chaetoglobosin A based on the data obtained form $^1H-NMR$, $^{13}C-NMR$, DEPT 90, 135, $^1H-^1H$ COSY, $^1H-^{13}C$ COSY and EI/MS. $ED_{50}$ values of the chaetoglobosin A against P. ultimum, P. capsici, R. solani, B. cinerea and F. oxysporum were 1.98, 4.01, 4.16, 2.67 and 35.14 ppm, respectively.

  • PDF

Studies on the Plant Plant Pathogenic Corynebacteria; The Synthesis of B Group Vitamins by Plant Pathogenic Bacteria (Corynebacterium 속 식물병원세균에 관한 연구 -식물병원세균의 Vitamin B군의 합성 -)

  • Kim Jong-wan;Mukoo Hideo
    • Korean journal of applied entomology
    • /
    • v.14 no.3 s.24
    • /
    • pp.155-161
    • /
    • 1975
  • The results of studies on the synthesis of B group vitamins by plant pathogenic bacteria indicate that most bacteria utilize thiamine, nicotinic acid, biotin and P-Aminobenzoic acid as growth factors. Riboflavin (vitamin $B_2$) was produced by most bacterial genera including the Corynebacteria but with the exception of C. rathay and C.fasciant. The results suggest that the ability to produce riboflavin is not a generic characteristic of Corynebacterium, and that the accuracy of the ultra-violet light method (one of the diagnostic tests for potato bacterial ring rot disease caused by Corynebacterium sepedonicum) must he reconsidered.

  • PDF

Survey and Screening of Fungicide for the Control of Tomato Black Leaf Mold Pseudocercospora fuligena

  • Lee, Mun Haeng;Lee, Hee Keyung;Cho, Pyeng Hwa;Kim, Young Shik;Cho, Suk Keyung;Kim, Sung Eun;Chun, Hee;Kim, Hong Gi;Kim, Sang Woo;Lee, Youn Su
    • Research in Plant Disease
    • /
    • v.21 no.2
    • /
    • pp.94-98
    • /
    • 2015
  • Tomato black leaf molds were collected from the six metropolitan cities, which were occurred mainly from the end of August until November. There was no significant difference on the fungal growth between potato dextrose agar and tomato-oatmeal agar media. The mycelial growth of the fungus was robust at a relatively high temperature, from 28 to $30^{\circ}C$. The suppression rates of hyphal growth ranged from 17-98% on the media supplemented with four different chemicals such as difenoconazole, fluquinconazole and prochloraz manganese complex, metconazole, and flutianil and there is no different suppression rates of the fungicides on the tested Pseudocercospora fuligena isolates.

Development of a SCAR Marker Linked to Ph-3 in Solanum ssp.

  • Park, Pue Hee;Chae, Young;Kim, Hyun-Ran;Chung, Kyeong-Ho;Oh, Dae-Geun;Kim, Ki-Taek
    • Korean Journal of Breeding Science
    • /
    • v.42 no.2
    • /
    • pp.139-143
    • /
    • 2010
  • Late blight caused by Phytophthora infestans is historically a serious epidemic disease in potato and tomato cultivations. Accession L3708 (Solanum pimpinellifolium), a new source for late blight resistance was identified in AVRDC, and carries the resistance gene, Ph-3, incompatible to P. infestans race 3. The AFLP markers linked to Ph-3 were previously developed from the L3708 accession (Chunwongse et al. 2002). To facilitate tomato breeding with the Ph-3 gene, an attempt was made to convert AFLP markers to sequence-characterized amplified region (SCAR) markers. Among 6 AFLP markers, only one AFLP marker, L87, was successfully converted to SCAR marker. The resistance-specific 230 bp AFLP fragment was cloned and sequenced, and the PCR primer amplifying a 123 bp fragment was designed. This SCAR marker could discriminate resistant and susceptible individuals with high stringency. The developed SCAR marker could be used for the marker assisted-selection in tomato breeding programs.

First Report of Botrytis Mold Caused by Botrytis cinerea on Peonies (Paeonia lactiflora Pall.)

  • Kim, Hyo Jeong;Park, Min Young;Ma, Kyung-Cheol;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.279-282
    • /
    • 2020
  • In 2019, symptoms of Botrytis mold on the peony (Paeonia lactiflora Pall.) 'Sarah Bernhardt' were observed during a survey of the commercial greenhouses of Gangjin County, South Korea. The initial symptoms, small brown spots, were observed mainly at the leaf margins. The lesions extended to the interior of leaves forming irregular spots in which abundant conidia developed. Fungal colonies were obtained from surface-sterilized tissue excised from growing edges of the lesions that were transferred to potato dextrose agar. Melanized irregular sclerotia were formed in these colonies after 40 days at 8℃. Molecular phylogeny based on sequences of genes for glyceraldehyde-3-phosphate dehydrogenase, heat-shock protein 60, and RNA polymerase subunit II were highest for the PBC-2 isolate to the type strains of Botrytis cinerea, rather than other Botrytis species associated with peony diseases. Following Koch's postulates, healthy Sarah Bernhardt plants were inoculated with a foliar application of conidial suspensions of the isolate PBC-2. Following incubation under humidity with a 12 hr photoperiod for 7 days, symptoms developed on the leaf margins that were identical to those observed in the greenhouses. This study is the first report of Botrytis blight caused by B. cinerea on peonies grown in commercial greenhouses in South Korea.

Changes of Mating Type Distribution and Fungicide-resistance of Phytophthora infestans Collected from Gangwon Province (강원지역 감자 역병균 Phytophthora infestans의 교배형 및 약제저항성 변화)

  • Park, Kyeong-Hun;Ryu, Kyoung-Yul;Yun, Jeong-Chul;Jeong, Kyu-Sik;Kim, Jeom-Soon;Kwon, Min;Kim, Byung-Sup;Cha, Byeong-Jin
    • Research in Plant Disease
    • /
    • v.16 no.3
    • /
    • pp.274-278
    • /
    • 2010
  • Potato late blight caused by Phytophthora infestans was the most constrain disease at potato cultivation areas. The mating type distribution and fungicides response of P. infestans were investigated to elucidate the changes of pathogen from Gangwon province. On the fungal isolates in 2006, 58.7% were A1 mating type and 41.3% were A2 mating type. In 2007, A1 mating type isolates increased to 93.3% and A2 mating type isolates were collected from Jinbu areas as much as 6.7%. About 234 isolates analysed for metalaxyl response, the results was resistance 73.7%, intermediate 18.8% and sensitive 7.5% in 2006. And it was resistance 59.4%, intermediate 4.0% and sensitive 36.6% in 2007. It meant that mating type distribution and fungicide response were very different over the collection sites. Minimal inhibition concentration (MIC) of dimethomorph examined with 126 isolates in 2006 and 106 isolates in 2007. MIC over $1.0\;{\mu}g/ml$ was 56.3% in 2006 and it was 3.8% in 2007. The average $EC_{50}$ value of P. infestans was $0.37\;{\mu}g/ml$ in 2006, but it decreased to $0.12\;{\mu}g/ml$ in 2007. Fungicides response and pathogenesis of P. infestans should be monitored continuously to enhance the chemical efficacy at potato fields.

Screening of effective control agents against bacterial soft rot on Chinese cabbage in alpine area (고랭지 배추 무름병 방제를 위한 우수약제 선발)

  • Chung, Eun-Kyoung;Zhang, Xuan-Zhe;Yeoung, Young-Rog;Kim, Byung-Sup
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.1
    • /
    • pp.32-37
    • /
    • 2003
  • Bacterial soft rot by Erwinia carotovora subsp. carotovora is one of the diseases causing the biggest problem in Chinese cabbage. Chemical screening was conducted to select effective agents for controlling bacterial soft rot. Control effect of antibiotics, plant activator, and Biokeeper (avirulent Erwinia) to soft rot were tested by in vitro assay, nursery test, and field experiment. The in vitro assay was done by paper disc method and potato slice method. The nursery test was performed by using mineral oil inoculation method with consistent disease induction. The in vitro assay showed that streptomycin, oxolinic acid, bronopol, and copper hydroxide significantly suppressed the growth of pathogenic bacterium and the decomposition of potato slice. However, plant activators including acibenzolar-S-methyl did not show the suppressive effect on the growth of pathogenic bacterium and the decomposition of potato slice. When applied by the nursery test condition using mineral oil inoculation method with Chinese cabbage 'Kangruckyeurum', Biokeeper, oxolinic acid, antibiotics streptomycin, validamycin, and copper compound provided 83.5%, 95.2%, 91.2%, 57.5% and 79.9% in control efficacy, respectively. However, the control effect of acibenzolar-S-methyl showed to be low to cause phytotoxicity. Also acibenzolar-S-methyl showed a significant control effect in the field experiment with Chinese cabbage 'Sanchon' in 2000, but the field experiment with Chinese cabbage 'Kangruckyeurum' in 2001 revealed it had phytotoxicity to Chinese cabbage. Such a difference was considered to be caused by differences in phytotoxic reaction of Chinese cabbage cultivars to the chemical. Streptomycin+copper, copper hydroxide and Biokeeper showed 79.7%, 71.9% and 60.9% in control efficacy, respectively, in the field experiment with Chinese cabbage 'Sanchon' in 2002.

Effect of High Temperature, Daylength, and Reduced Solar Radiation on Potato Growth and Yield (고온, 일장 및 저일사 조건이 감자 생육 및 수량에 미치는 영향)

  • Kim, Yean-Uk;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.2
    • /
    • pp.74-87
    • /
    • 2016
  • Potato phenology, growth, and yield are projected to be highly affected by global warming in the future. The objective of this study was to examine the responses of potato growth and yield to environmental elements like temperature, solar radiation, and daylength. Planting date experiments under open field condition were conducted using three cultivars differing in maturity group (Irish Cobbler and Superior as early; Atlantic as mid-late maturing) at eight different planting dates. In addition, elevated temperature experiment was conducted in four plastic houses controlled to target temperatures of ambient temperature (AT), $AT+1.5^{\circ}C$, $AT+3^{\circ}C$, and $AT+5^{\circ}C$ using cv. Superior. Tuber initiation onset was found to be hastened curve-linearly with increasing temperature, showing optimum temperature around $22-24^{\circ}C$, while delayed by longer photoperiod and lower solar radiation in Superior and Atlantic. In the planting date experiments where the average temperature is near optimal and solar radiation, rainfall, pest, and disease are not limiting factor for tuber yield, the most important determinant was growth duration, which is limited by the beginning of rainy season in summer and frost in the late fall. Yield tended to increase along with delayed tuber initiation. Within the optimum temperature range ($17^{\circ}-22^{\circ}C$), larger diurnal range of temperature increased the tuber yield. In an elevated temperature treatment of $AT+5.0^{\circ}C$, plants failed to form tubers as affected by high temperature, low irradiance, and long daylength. Tuber number at early growth stage was reduced by higher temperature, resulting in the decrease of assimilates allocated to tuber and the reduction of average tuber weight. Stem growth was enhanced by elevated temperature at the expense of tuber growth. Consequently, tuber yield decreased with elevated temperature above ambient and drop to almost nil at $AT+5.0^{\circ}C$.

Comparative proteome profiling in the storage root of sweet potato during curing-mediated wound healing (큐어링 후 저장에 따른 고구마 저장뿌리 단백질체의 비교분석)

  • Ho Yong Shin;Chang Yoon Ji;Ho Soo Kim;Jung-Sung Chung;Sung Hwan Choi;Sang-Soo Kwak;Yun-Hee Kim;Jeung Joo Lee
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.1-10
    • /
    • 2023
  • Sweet potato (Ipomoea batatas L. Lam) is an economically important root crop and a valuable source of nutrients, processed foods, animal feeds, and pigment materials. However, during post-harvest storage, storage roots of sweet potatoes are susceptible to decay caused by various microorganisms and diseases. Post-harvest curing is the most effective means of healing wounds and preventing spoilage by microorganisms during storage. In this study, we aimed to identify proteins involved in the molecular mechanisms related to curing and study proteomic changes during the post-curing storage period. For this purpose, changes in protein spots were analyzed through 2D-electrophoresis after treatment at 33℃ (curing) and 15℃ (control) for three days, followed by a storage period of eight weeks. As a result, we observed 31 differentially expressed protein spots between curing and control groups, among which 15 were identified. Among the identified proteins, the expression level of 'alpha-amylase (spot 1)' increased only after the curing treatment, whereas the expression levels of 'probable aldo-keto reductase 2-like (spot 3)' and 'hypothetical protein CHGG_01724 (spot 4)' increased in both the curing and control groups. However, the expression level of 'sporamin A (spot 10)' decreased in both the curing and control treatments. In the control treatment, the expression level of 'enolase (spot 14)' increased, but the expression levels of 'chain A of actinidin-E-64 complex+ (spot 19)', 'ascorbate peroxidase (spot 22)', and several 'sporamin proteins (spot 20, 21, 23, 24, 27, 29, 30, and 31)' decreased. These results are expected to help identify proteins related to the curing process in sweet potato storage roots, understand the mechanisms related to disease resistance during post-harvest storage, and derive candidate genes to develop new varieties with improved low-temperature storage capabilities in the future.