• Title/Summary/Keyword: Potato Disease

Search Result 374, Processing Time 0.028 seconds

Scab of Balsam Pear (Momordica charantia) Caused by Cladosporium cucumerinum in Korea

  • Kwon, Jin-Hyeuk;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • v.22 no.2
    • /
    • pp.161-163
    • /
    • 2006
  • During winter season of 2004 to 2006, a scab disease on balsam pear (Momordica charantia) caused by Cladosporium cucumerinum was observed in Daesan-myon, Changwon-city, Gyeongnam province, Koyea. The disease symptom started with small dark brown speck on the fruits and leaves then the lesions expanded and spreaded irregularly. The aggregated mycelial mass and conidia of the fungus formed sooty scab. The colony of purely isolated fungus grew in greenish black to velvety on potato dextrose agar (PDA). Conidia were ellipsoidal, fusiform or subspherical, mostly one-celled but occasionally septated and $3{\sim}32{\times}2{\sim}6{\mu}m$ in size. The conidiophores were erected and had long branch, chains pale olivaceous brown in color and $6{\times}280{\mu}m$ in size. Ramoconidia were $10{\sim}34{\times}3{\sim}8{\mu}m$ in size. The fungus was identified as Cladosporium cucumerinum based on the morphological characteristics. The pathogenicity of the fungus was confirmed according to Koch's postulate. The optimum temperature of the isolate was about $20^{\circ}C$. This is the first report on scab of balsam pear caused by C. cucumerinum in Korea.

Gray Mold on Saintpaulia ionantha Caused by Botrytis cinerea in Korea (Botrytis cinerea에 의한 바이올렛 잿빛곰팡이병)

  • Kim, Hyung-Moo
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.75-77
    • /
    • 2011
  • Gray mold caused by Botrytis cinerea occurred on Saintpaulia ionantha in flower shop of the Jeonju city in Korea. Typical symptoms with brown water-soaked and rotting lesions were appeared on the flowers, leaves and petiole of infected plants. Many conidia spores appeared on the lesions under humid conditions. Colonies were grayish brown and sclerotial formation on potato dextrose agar. Conidia were one celled, mostly ellipsoidal or ovoid in shape, and were colorless to pale brown in color. The conidia were $7{\sim}14{\times}5{\sim}9\;{\mu}m$ in size. Based on pathogenicity and morphological characteristics of the isolated fungus, the causal fungus was identified as B. cinerea Persoon: Fries. Gray mold of S. ionantha was proposed to the name of this disease.

Occurrence of Eggplant Wilt Caused by Verticillium dahliae

  • Kim, Sung-Kee;Kim, Ki-Woo;Park, Eun-Woo;Hong, Soon-Sung
    • The Plant Pathology Journal
    • /
    • v.16 no.3
    • /
    • pp.156-161
    • /
    • 2000
  • A wilt disease occurred on greenhouse-grown eggplants at Yeojoo, Korea in 1997. The wilted eggplants had leaves with gradual yellowing, interveinal necrosis, and marginal crinkling. Vascular tissues of diseased stems were discolored, turned black, and microsclerotia developed at the base of stems. The disease progressed from lower parts of the plants upward. Fungal isolates from discolored vascular tissues were initially whitish to cream color on potato-dextrose agar (PDA) plate, which later turned black due to the formation of microsclerotia. Conidiophores were erect, hyaline, verticillately branched, and had 3 or 4 phialides arising at each node. Phialides were hyaline, arranged in whorls, and measured as 17.5-32.5 x 2-3$\mu\textrm{m}$. Conidia were hyaline, ellipsoidal to sub-cylindrical, mainly one-celled, and measured as 5-8.8 x 2-4$\mu\textrm{m}$. Conidia were borne in small clusters at the tips of phialides. Microsclerotia formed on PDA plates, and consisted of globular cells that formed irregular masses of various shapes. Chlamydospores were absent. Based on these cultural and morphological characteristics, the fungus was identified as Verticillium dahliae Klebahn. Pathogenicity tests by root cutting, root dipping or soil drenching resulted in similar symptoms observed in the naturally infected eggplants. This is the first report on occurrence of Verticillium wilt of eggplant in Korea.

  • PDF

Theobroxide Treatment Inhibits Wild Fire Disease Occurrence in Nicotiana benthamiana by the Overexpression of Defense-related Genes

  • Ahn, Soon Young;Baek, Kwang-Hyun;Moon, Yong Sun;Yun, Hae Keun
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.110-115
    • /
    • 2013
  • Theobroxide, a novel compound isolated from a fungus Lasiodiplodia theobromae, stimulates potato tuber formation and induces flowering of morning glory by initiating the jasmonic acid synthesis pathway. To elucidate the effect of theobroxide on pathogen resistance in plants, Nicotiana benthamiana plants treated with theobroxide were immediately infiltrated with Pseudomonas syringae pv. tabaci. Exogenous application of theobroxide inhibited development of lesion symptoms, and growth of the bacterial cells was significantly retarded. Semiquantitative RT-PCRs using the primers of 18 defense-related genes were performed to investigate the molecular mechanisms of resistance. Among the genes, the theobroxide treatment increased the expression of patho-genesis-related protein 1a (PR1a), pathogenesis-related protein 1b (PR1b), glutathione S-transferase (GST), allen oxide cyclase (AOC), and lipoxyganase (LOX). All these data strongly indicate that theobroxide treatment inhibits disease development by faster induction of defense responses, which can be possible by the induction of defense-related genes including PR1a, PR1b, and GST triggered by the elevated jasmonic acid.

Seed and Root Rots of Ginseng (Panax quinquefolius L) Caused by Cylindrocarpon destructans and Fusarium spp.

  • Reeleder, R.D.;Roy, R.;Capell, B.
    • Journal of Ginseng Research
    • /
    • v.26 no.3
    • /
    • pp.151-158
    • /
    • 2002
  • Ginseng (Panax quinquefolius L.) has become one of the most valuable herb crops grown in North America. However, traditional cropping practices are favourable to disease and significant losses due to root disease are common, despite frequent use of fungicides. Seedlots are often contaminated with pathogens, however, little is known about the causes of seed decay and the role of seed pathogens as incitants of root rots. It was shown that both Fusarium spp. and Cylindrocarpon destructans were able to rot seeds and that C. destructans was more virulent than Fusarium spp. on seedling roots. A modified rose bengal agar MRBA) medium (1 g KH$_2$PO$_4$; 0.5 g MgSO$_4$; 50 mg rose bengal; 10 g dextrose; 5 g Bacto peptone; 15 g Bacto agar; 30 mg streptomycin sulfate; 250 mg ampicillin; 10 mg rifampicin; 500mg pentachloronitrobenzene; 500 mg dicloran; and 1 L distilled water) was superior to potato dextrose agar in detecting C. destuctans in diseased roots. Isolation of C. destructans from diseased seedlings arising from seeds sown in replant soil supported the hypothesis that this pathogen is a cause of ginseng replant failure in North America.

Rapid Identification of Diaporthe citri by Gene Sequence Analysis

  • Zar Zar Soe;Yong Ho Shin;Hyun Su Kang;Mi Jin Kim;Yong Chull Jeun
    • Research in Plant Disease
    • /
    • v.29 no.2
    • /
    • pp.130-136
    • /
    • 2023
  • Citrus melanoses caused by Diaporthe citri, has been one of the serious diseases in many citrus orchards of Jeju Island. To protect melanose in citrus farms, a fast and exact diagnosis method is necessary. In this study, diseased leaves and dieback twigs were collected from a total of 49 farms within March to April in 2022. A total of 465 fungal isolates were obtained from a total of 358 isolated plant samples. Among these fungal isolates, 40 representatives of D. citri isolates which were isolated from 22 twigs and 18 leaves on 23 farms were found based on cultural characteristics on potato dextrose agar and conidial morphology. Additionally, the molecular assay was carried out and compared with those by morphological diagnosis. All isolates were identified as D. citri by analyzing the sequences at the internal transcribed spacer (ITS) rDNA region using primers of ITS1/ITS4 or at β-tubulin using primer Btdcitri-F/R. Therefore, based on the present study, where the results of morphological identification of conidial type were consistent with DNA sequence analysis of certain gene, choosing a suitable method for a fast diagnosis of citrus melanose was suggested.

First Report of Pyrenophora tritici-repentis in Wheat (Triticum aestivum L.) in Korea and in vitro Selection of an Effective Fungicide

  • Min-Hye Jeong;Eu Ddeum Choi;Seol-Hwa Jang;Sang-Min Kim;Sook-Young Park
    • The Korean Journal of Mycology
    • /
    • v.51 no.4
    • /
    • pp.277-286
    • /
    • 2023
  • Tan spot, caused by Pyrenophora tritici-repentis, is a major foliar disease in wheat worldwide. In April 2021, tan spot symptoms were observed in a commercial wheat field in Suncheon, Jeonnam Province, Korea, with over 5% of the wheat leaves exhibiting symptoms. These symptoms included oval-shaped tan necrosis surrounded by a bright halo. The three representative isolates exhibited irregular mycelial growth on V8-potato dextrose agar and produced pseudothecia. Based on the concatenated sequence datasets of four multi-genes, including the internal transcribed spacer, large subunit ribosomal RNA, glyceraldehyde-3-phosphate dehydrogenase, and RNA polymerase II second-largest subunit genes, phylogenetic analysis revealed that these three isolates clustered in the same clade as P. tritici-repentis. Results of pathogenicity test indicated that the initial symptoms appeared 5 days post-inoculation (dpi), with typical tan spot symptoms developing at 7 dpi. The pathogen was successfully re-isolated from the symptomatic tissues, thus fulfilling Koch's postulates. Furthermore, we selected three fungicides that effectively inhibited the mycelial growth of P. tritici-repentis by more than 90% in vitro. To the best of our knowledge, this is the first report of tan spot disease in wheat in Korea.

Comparison of Sudden Death Syndrome in Responses to Fusarium solani f. sp. glycines between Korea and U.S. Soybean Lines

  • Cho, Joon-Hyeong;Kim, Yong-Wook;Rupe, J.C.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.382-390
    • /
    • 1999
  • In order to identify the responses of Korean soybean cultivars to sudden death syndrome (SDS), forty-two Korean cultivars and three check cultivars (Hartwig and PI 520733 are resistant; Hartz 6686 is susceptible) were tested with sorghum seed inoculum infested with Fusarium solani f. sp. glycines isolate 171 in the greenhouse. This isolate has blue pigment cultural shape on potato dextrose agar (PDA) medium. All Korean cultivars inoculated with F. solani isolate 171 showed the typical SDS symptoms and disease severity on soybean leaves in each cultivar varied at 4 weeks after inoculation. Nine cultivars were included in the most SDS susceptible group and six cultivars were included in the most susceptible group based on Duncan's multiple range tests (P$\leq$0.05). In results of the LSD analysis for SDS the resistant group, a total of twenty-five Korean cultivars were included in the same SDS resistant group as PI 520733 or Hartwig and fourteen Korean cultivars were included in the same SDS susceptible group as Hartz 6686. In the second experiment, ten Korean cultivars, ten U.S. cultivars, and one introduced line were compared in the same way as the first experiment Disease severity ranking of check cultivars, Hartwig, PI 520733, and Hartz 6686, were the same as in the first experiment. Within Korean cultivars, seven cultivars showed the consistent severity proportions of leaf symptoms. Disease rankings of these cultivars in this experiment were the same as those in the first experiment. Three US cultivars: Hartwig, Hartz 5454, and Forrest, three Korean cultivars: Keunolkong, Myeongjunamulkong, and Jinpumkong 2, and one introduced line, PI 520733, were included in the highest SDS resistant group. Shinphaldalkong 2, Milyang 87, and Samnamkong consistently showed the highest SDS susceptibility in both experiments. Average disease severity in the first and the second experiment were 49.56% and 45.39%, respectively.

  • PDF

Screening of Selected Korean Sweetpotato (Ipomoea batatas) Varieties for Fusarium Storage Root Rot (Fusarium solani) Resistance

  • Lee, Seung-yong;Paul, Narayan Chandra;Park, Won;Yu, Gyeong-Dan;Park, Jin-Cheon;Chung, Mi-Nam;Nam, Sang-Sik;Han, Seon-Kyeong;Lee, Hyeong-Un;Goh, San;Lee, Im Been;Yang, Jung-Wook
    • The Korean Journal of Mycology
    • /
    • v.47 no.4
    • /
    • pp.407-416
    • /
    • 2019
  • A common post-harvest disease of sweetpotato tuber is root rot caused by Fusarium solani in Korea as well as the other countries. Storage root rot disease was monitored earlier on sweetpotato (Ipomoea batatas) in storehouses of different locations in Korea. In the present study, an isolate SPL16124 was choosen and collected from Sweetpotato Research Lab., Bioenergy Crop Research Institute, NICS, Muan, Korea, and confirmed the identification as Fusarium solani by conidial and molecular phylogenetic analysis (internal transcribed spacer ITS and translation elongation factor EF 1-α gene sequences). The isolate was cultured on potato dextrose agar, and conidiation was induced. The fungus was screened for Fusarium root rot on tuber of 14 different varieties. Among the tested variety, Yenjami, Singeonmi, Daeyumi, and Sinjami showed resistant to root rot disease. Additionally, the pathogen was tested for pathogenicity on stalks of these varieties. No symptom was observed on the stalk, and it was confirmed that the disease is tissue specific.

Screening of Antifungal Microorganisms with Strong Biological Activity against Oak Wilt Fungus, Raffaelea quercus-mongolicae

  • Hong, A Reum;Yun, Ji Ho;Yi, Su Hee;Lee, Jin Heung;Seo, Sang Tae;Lee, Jong Kyu
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.5
    • /
    • pp.395-404
    • /
    • 2018
  • Since the mass mortality of Quercus mongolica has been first reported in Gyeonggi province at 2004, the disease spread rapidly over Korean peninsula annually. Ambrosia beetle (Platypus koryoensis) was known as the insect vector of oak wilt fungus, Raffaelea quercus-mongolicae, and control methods of the disease had mainly been focused on eradication of insect vector. However, for the efficient management of the disease, combined control methods for both of the pathogenic fungus and insect vector are strongly required. As one of the efforts to suppress the pathogenic fungus, antifungal activities of Streptomyces isolated from oak forest soil were assayed in this study. Optimum culture condition for the selected isolates was also studied, As a result, Streptomyces blastmyceticus cultured in PDB (Potato Dextrose Broth) at $25^{\circ}C$ for 1 week showed the strongest antifungal activity against oak wilt fungus. Mycelial growth inhibition rates (MGIRs) of Streptomyces isolates were compared on culture media supplemented with heated and unheated culture filtrates of S. blastmyceticus. MGIRs on culture media with unheated culture filtrates were generally higher than those on culture media with heated culture filtrates. Antagonistic mechanism to get involved in the inhibition of hyphal growth and spore formation of the pathogen is due to the antifungal metabolites produced by Streptomyces. This study will provide the fundamental information in developing biocontrol agents for the environment-friendly management of oak wilt disease.