• Title/Summary/Keyword: Potato Disease

Search Result 374, Processing Time 0.021 seconds

Diagnosis of Potato Leafroll disease by Fluorescence Microscopic Detection of Callose Stained with Resorcin Blue (Resorcin Blue 염색 기법에 의한 감자 잎말림병의 형광 현미경적 진단)

  • 이철호;나용준
    • Korean Journal Plant Pathology
    • /
    • v.11 no.2
    • /
    • pp.101-106
    • /
    • 1995
  • Deep blue fluorescence of resorcin blue-stained callose was observed only in the potato leafroll virus (PLRV)-infected potato plants, but not in other potato viruses investigated. The plant sections stained with aniline blue showed non-specific fluorescence regardless of PLRV infection, which means that aniline blue is not suitable for the staining of callose induces by PLRV infection. The fluorescence of resorcin blue-stained callose was more easily detectable than autofluorescence by a direct fluorescence detection method because of its deep blue color. The lateral branch of lower leaves was turned out to be the best material for fluorescence observation of all plant parts tested. In comparison of diagnostic efficacy of this technique to enzyme-linked immunosorbent assay (ELISA), PLRV infected potato plants showed corresponding increment of the fluorescence of resorcin blue stained callose as absorption values in ELISA increased. In the future, the criteria measuring the fluorescence objectively are thought to be determined for the practical application to the diagnosis of potato leafroll disease.

  • PDF

Biocontrol of Potato White Mold Using Coniothyrium minitans and Resistance of Potato Cultivars to Sclerotinia sclerotiorum

  • Ojaghian, Mohammad Reza
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.346-352
    • /
    • 2010
  • This study was conducted in Bahar and Lalehjin, Hamadan, Iran to assess the biocontrol efficacy of Coniothyrium minitans Campbell against potato white mold caused by Sclerotinia sclerotiorum (Lib.) de Bary under field and greenhouse conditions. In addition, the resistance of common potato cultivars against S. sclerotiorum was determined in a greenhouse experiment. After straw inoculation of six potato cultivars (Pashandi, Istambouli, Agria, Marfauna, Alpha and Spartaan) with S. sclerotiorum, the least disease severity was observed in Spartaan and Marfauna. Agria showed the most susceptibility to S. sclerotiorum. Compared with the healthy control, different concentrations of C. minitans conidia ($10^7$, $10^8$ and $10^9$ conidia/mL) reduced disease severity under greenhouse condition, and a concentration $10^9$ was the most effective treatment. During 2008 and 2009, four field trials were conducted to evaluate the efficacy of C. minitans in different soil and aerial applications on disease incidence of potato white mold. In 2008, soil application of $Contans^{(R)}$ WG (a commercial product of C. minitans) showed the greatest biocontrol capacity whereas soil application of solid-substrate C. minitans was found inferior when compared with other treatments in both Bahar and Lalehjin field sites. In 2009, benomyl application was the most effective treatment in reducing disease incidence in both tested field sites.

Direct Antimicrobial Activity and Induction of Systemic Resistance in Potato Plants Against Bacterial Wilt Disease by Plant Extracts

  • Hassan, M.A.E.;Bereika, M.F.F.;Abo-Elnaga, H.I.G.;Sallam, M.A.A.
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.352-360
    • /
    • 2009
  • The potential of three plants extracts, to protect potato plants against bacterial wilt caused by Ralstonia solanacearum was determined under greenhouse and field conditions. All soil drenching treatments of aqueous plant extracts of Hibsicus sabdariffa, Punica granatum and Eucalyptus globulus significantly reduced the disease severity compared with inoculated control. Although the applications of all three plant extracts resulted in similar reductions of disease severity in field up 63.23 to 68.39%, treatment of E. globulus leaf extract was found greater in restricting the symptom development than other the two plant extracts in the greenhouse. More than 94% reduction in the bacterial wilt symptom was observed in potato plants. All tested plant extracts were effective in inhibiting the growth of bacterial pathogen, not only in vitro, but also in stem of potato plants as compared with the inoculated control Potato plants treated with extract of H. sabdariffa reduced bacterial growth more effectively than treatment with P. granatum and E. globulus. Activity of defence-related enzymes, including peroxidase, polyphenoloxidase and phenylalanine ammonia lyase, were significantly increased in plants treated with the plant extracts compared to the control during the experimental period. In general, the higher enzymes activities were determined in both inoculated and non-inoculated treated potato plants after 8 days from plant extracts treatment. These results suggested that these plant extracts may be play an important role in controlling the potato bacterial wilt disease, through they have antimicrobial activity and induction of systemic resistance in potato plants.

Development of non-destructive measurement method for discriminating disease-infected seed potato using visible/near-Infrared reflectance technique (광 반사방식을 이용한 감염 씨감자 비파괴 선별 기술 개발)

  • Kim, Dae-Yong;Cho, Byoung-Kwan;Lee, Youn-Su
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.1
    • /
    • pp.117-123
    • /
    • 2012
  • Pathogenic fungi and bacteria such as Pectobacterium atrosepticum, Clavibacter michiganensis subsp. sepedonicus, Verticillium albo-atrum, and Rhizoctonia solani were the major microorganism which causes diseases in seed potato during postharvest process. Current detection method for disease-infected seed potato relies on human inspection, which is subjective, inaccurate and labor-intensive method. In this study, a reflectance spectroscopy was used to classify sound and disease-infected seed potatoes with the spectral range from 400 to 1100 nm. Partial least square discriminant analysis (PLS-DA) with various preprocessing methods was used to investigate the feasibility of classification between sound and disease-infected seed potatoes. The classification accuracy was above 97 % for discriminating disease seed potatoes from sound ones. The results show that Vis/NIR reflectance method has good potential for non-destructive sorting for disease-infected seed potatoes.

Characterization of disease outbreak pattern of transgenic potato plants with the coat protein gene of Potato leaf roll virus.

  • Shin, D.B.;Cheon, J.U.;Jee, J.H;Lee, S.H.;Park, H.S.;Park, J.W
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.121.2-122
    • /
    • 2003
  • Since the demonstration that the transgenic plants expressing tobacco mosaic virus(TMV) coat protein(CP) gene showed resistance to TMV infection, there have been numerous attempts to produce virus-resistant plant by introducing of a part of or modified viral genome. This study was conducted to investigate the characterization and variability of disease outbreak of transgenic potato(T-potato) with the CP gene of potato leaf roll virus(PLRV) in an isolated field from 2000 to 2002. In the field inspection, incidence of PLRV on T-potato showed only 3.5%, while non-transgenic potato(N-potato) revealed 13.4%. Infection rate of PLRV was considerably low on T-potato with 4.2% compared to 15.4% of N-potato in ELISA tests. Those of potato virus M, potato virus Y and potato virus X on both potatoes were not statistically different. Infection of potato virus A was not observed on both potatoes. Incidence of potato late blight caused by Phytopkhora infestans on T-potato and N-potato did not differ each other with 52.7%, and 50.8%, respectively, Mating type of the causal fungus isolated from both potatoes was all Al types. Results indicates that the CP gene of PLRV affects specifically to the virus in the transgenic potato.

  • PDF

Studies on the Potato Virus X and Potato Leaf Roll Virus for Disease-free Seed Potato Production (무병종서 생산을 위한 감자X바이러스 및 엽권바이러스에 관한 연구)

  • Jhung-Il Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.7 no.1
    • /
    • pp.31-63
    • /
    • 1969
  • A series of experiment was carried out to study on the production of disease-free seed potatoes at the Alpine Experiment Station from 1960 to 1968, which initiated a study of comparison on degeneration of plain warm region and high altitude products and the effect of latent potato virus X (PVX) and potato leaf roll virus(PLRV) on degeneration. Particular observations were made on some aspect of the nature of potato virus disease and its control such as concentrations of PVX, range of host plants, physical properties such as concentrations of PYX, range of host plants, physical properties and carrying effect of insects, by investigating 9 different areas of the main potato producing regions (Kimhae, Taegu, Choongju, Taejoen, Suwon, Kwangju, Chonju, Cheju and Chinju). Highly purified anti-serum was separated and tested for control of the virus disease and also various method of prevention and control of PLRV were observed, using cultivation of sprouted seed tubers, early harvesting method, and systemic chemicals. The results obtained are summarized as follows; 1. Potato yield in the plain region decreased by 32.8~66.3% in the first year cultivation of seed potatoes from colder region, and the rate of virus infection was 92.9 to 95.4%. 2. Plants of three families including, 20 species were susceptible to the PVX, and among the plants Salvia officinalis of a habits only was the carrier while the symptom of Digitalis purpurea of Screphulariaceae was masked. Necrosis and ring spot was occurred in most pJants of the Solanaceae and ring spot symptom also was observed in Nicotiana tabacum L. var. White Burley and in N. glutinosa. 3. The 8$C_2$ strain of virus had the following physical properties; thermal inactivation point, 68-$72^{\circ}C$ : dilution inactivation point, above 1, 000, 000 dilution: ageing in vitro, 240-360 days: and ageing in dry plant tissue, 30 days. 4. Myzus persicae and Oxya spp. did not transmit the 8$C_2$ strain of potato virus. 5. Virus was purified through the ammonium sulphate isolating method, and higher titer value, 1/2048 was obtained through anti-serum test. 6. Inhibition Chenopodiacae on the virus infection of potato was remarkable, and inhibition of local lesion host also was observed. 7, By earlier planting of sprouted seed tubers, growth period could be prolonged by 10 to 12 days. 8. Earlier harvest decreased much the rate of virus infection of seed potatoes. 9. According to the results of aphid control trial using systemic soil insecticides at Kangnung and Taekwanlyung, PSP 204, Disyston and Thimet was effective to aphid control. In particular, control effect of twice treatments of PSP 204 was great. 10. Treatmental effect of those chemicals lasted about 60-70 days. However, single foliar application of emulsified chemicals was not effective to potato virus control. 11. The effect of PSP 204, Disyston, and Thimet on the control of potato leaf roll virus was great, particularly in the case of two treatments of PSP 204, at Kangnung as well as at Taekwanlyung. Higher negative correlationship between the control effect of potato leaf roll virus and potato yield was observed showing the value r=-0.85 at Kangnung, and r=-0.87 at Taekwanlyung. 12. Differences in the control effects among PSP 204, Disyston, and Thimet was not noticed.

  • PDF

Genetic improvement of potato plants

  • Suharsono, Sony
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.12-12
    • /
    • 2017
  • Genetic improvement in potato can be carried out through several approaches, as sexual crosses, somatic hybridization, mutation and genetic engineering. Although the approach is different, but the goal is the same, to get a superior cultivar. Mutation and genetic engineering are very interesting methods for genetic improvement of potato plants. Mutation by gamma-ray irradiation have been performed to get some new potato cultivars which are more resistant to disease and have higher productivity. We have carried out a mutation of some potato cultivars and obtained some excellent clones to be potentially released as new superior cultivars. By the mutation method, we have released one potato cultivar for the French fries industry, and we registered one cultivar of potato for chips, and two cultivar for vegetable potatoes. Actually we are doing multi-location trial for three clones to be released as new cultivars. Through genetic engineering, several genes have been introduced into the potato plant, and we obtained several clones of transgenic potato plants. Transgenic potato plants containing FBPase gene encoding for fructose bisphosphatase, have a higher rate of photosynthesis and higher tuber productivity than non-transgenic plants. This result suggests that FBPase plays an important role in increasing the rate of photosynthesis and potato tuber productivity. Some transgenic potatoes containing the Hd3a gene are currently being evaluated for their productivity. Over expression of the Hd3a gene is expected to increase tuber productivity and induce flowering in potatoes. Transgenic potato plants containing MmPMA gene encoding for plasma membrane ATPse are more tolerant to low pH than non-transgenic plants, indicating that plasma membrane ATPase plays an important role in the potato plant tolerance to low pH stress. Transgenic potato plants containing c-lysozyme genes, are highly tolerant of bacterial wilt diseases caused by Ralstonia solanacearum and bacterial soft rot disease caused by Pectobacterium carotovorum. Expression of c-lyzozyme gene plays an important role in increasing the resistance of potato plants to bacterial diseases.

  • PDF

Virus Disease Incidences of Sweet Potatoes in Korea

  • Kwak Hae-Ryun;Kim Mi-Kyeong;Chung Mi-Nam;Lee Su-Heon;Park Jin-Woo;Kim Kook-Hyung;Choi Hong-Soo
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.239-247
    • /
    • 2006
  • In 2003, a survey of sweet potato virus disease was carried out in seed boxes as well as in various sweet potato fields. Virus infection rate was $5\sim100%$ and 100% at seed boxes and fields, respectively. No relationship of the disease incidence and severity was observed between sweet potato cultivating areas and cultivars. A total of 179 samples were collected and analyzed based on serological, electron microscopic and molecular properties. Field-grown sweet potatoes were examined to inspect 8 different viruses using NCM-ELISA, resulting that 30% of sweet potato was infected by one virus, whereas 70% was by more than 2 viruses. However, RT-PCR using primers selected for seven viruses, such as Sweet potato feathery mottle virus (SPFMV) revealed that of one-hundred seventy-nine tested; 71 of SPFMV, 29 of SPGV, 19 of SPFMV+SPGV, 1 of SPFMV+SwPLV, 1 of SPFMV+SPLCV, 2 of SPFMV+SPGV+SwPLV, 6 of SPFMV+SPGV+SPLCV, 2 of SPFMV+SPGV+SwPLV+SPLCV and 48 of unknown viruses were identified from the field samples. In root, viral diseases were severer in Yeoju than in Mokpo Experiment Station and infection rate was much different depending on sweet potato cultivars.

Control of Potato Late blight (Phytophthora infestans) with Postassium Phosphonate (아인산염의 감자 역병 방제효과)

  • Hong, Soon-Yeong;Lee, Kwang-Seok;Kang, Yong-Kil;Jee, Hyeong-Jin
    • Research in Plant Disease
    • /
    • v.9 no.3
    • /
    • pp.179-182
    • /
    • 2003
  • Effect of potassium phosphonate on control of potato late blight was evaluated at two fields in Jeju island. The chemical showed 82.5% control value in field located at low seacoast with 100 m elevation, while dimethomorph copper oxychloride showed 75.9 % control value. However, its control value was only 40% in another field located at mid-hilly area with 300 m elevation, in which environmental conditions of high hummudity and often rainfall were favorable to the disease development. Application intervals of the phosphonate from 7 to 15 effectively suppressed the disease and did not show statistically different control values among the spraying intervals. Results indicated that phosphonate similarly or more effectively controls potato late blight than fungicide, however, its control value could be vared according to enviromental conditions for the disease development and 15-d spraying intervals ware sufficient to suppress ther disease.

The Current Incidence of Viral Disease in Korean Sweet Potatoes and Development of Multiplex RT-PCR Assays for Simultaneous Detection of Eight Sweet Potato Viruses

  • Kwak, Hae-Ryun;Kim, Mi-Kyeong;Shin, Jun-Chul;Lee, Ye-Ji;Seo, Jang-Kyun;Lee, Hyeong-Un;Jung, Mi-Nam;Kim, Sun-Hyung;Choi, Hong-Soo
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.416-424
    • /
    • 2014
  • Sweet potato is grown extensively from tropical to temperate regions and is an important food crop worldwide. In this study, we established detection methods for 17 major sweet potato viruses using single and multiplex RT-PCR assays. To investigate the current incidence of viral diseases, we collected 154 samples of various sweet potato cultivars showing virus-like symptoms from 40 fields in 10 Korean regions, and analyzed them by RT-PCR using specific primers for each of the 17 viruses. Of the 17 possible viruses, we detected eight in our samples. Sweet potato feathery mottle virus (SPFMV) and sweet potato virus C (SPVC) were most commonly detected, infecting approximately 87% and 85% of samples, respectively. Furthermore, Sweet potato symptomless virus 1 (SPSMV-1), Sweet potato virus G (SPVG), Sweet potato leaf curl virus (SPLCV), Sweet potato virus 2 ( SPV2), Sweet potato chlorotic fleck virus (SPCFV), and Sweet potato latent virus (SPLV) were detected in 67%, 58%, 47%, 41%, 31%, and 20% of samples, respectively. This study presents the first documented occurrence of four viruses (SPVC, SPV2, SPCFV, and SPSMV-1) in Korea. Based on the results of our survey, we developed multiplex RT-PCR assays for simple and simultaneous detection of the eight sweet potato viruses we recorded.