• Title/Summary/Keyword: Potassium heptafluoroniobite

Search Result 3, Processing Time 0.019 seconds

The Effect of Reducing Agent on the Production of Niobium Powder by Metallothermic Reduction (금속열환원법에 의한 니오븀 분말제조시 환원제의 영향)

  • Hwang, Sun-Ho;Yoon, Jae-Sik;Kim, Byung-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.4
    • /
    • pp.186-189
    • /
    • 2009
  • In this study, niobium powder was made from potassium heptafluoroniobite($K_2NbF_7$) using sodium(Na) as a reductant and KCl, KF as a diluent based on the hunter metallothermic reduction method. The excesses of reductant were varied from 0%, 3%, 5% and 7%. When 7% excess of sodium was used, the un-reacted sodium remained in the reacted product. The niobium powder has been achieved by reducing 50 g of $K_2NbF_7$ with 5% sodium excess in a charge at a reduction temperature of $850^{\circ}C$. The proportion of fine fraction decreased appreciably and the yield of niobium powder improved from 65% to 85% with the increase of sodium excess. The average particle size of niobium powder is improved from 0.2 microns to 0.3 microns in the 5% excess sodium.

Preparation of Niobium Powders by Sodiothermic Reduction of K2NbF7 (K2NbF7로부터 Na 열환원 공정에 의한 니오븀 분말의 제조)

  • Yoon, Jae-Sik
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.386-390
    • /
    • 2009
  • Niobium(Nb) and Tantalum(Ta) are rarely found apart in nature and never in the free state. The element niobium amounts to 3% of the crustal abundance. On the whole, the niobium capacitor showed somewhat more unstable characteristics than the commercial tantalum capacitors, but is nonetheless considered applicable as a future substitute for tantalum capacitors. In this study, niobium powder was made from potassium heptafluoroniobite($K_2NbF_7$) by using sodium(Na) as a reductant and KCl and KF as diluents based on the hunter sodiothermic reduction method.,In order to obtain a high surface area niobium powder via the sodiothermic reduction method, a certain amount of diluent, such as alkali metal halides selected from NaCl, KCl, KF and NaF, was added in the raw materials to be reduced. However, if a higher surface area of powder is required, more diluents need to be used in the said method in order to produce niobium powder. But when more diluents are used, the niobium powder will be contaminated with more impurities and the yield will also decreased.

The Effect of Reduction Temperature on the Characteristic Variation of Niobium Powder During Metallothermic Reduction Process (금속열환원 공정에서 반응온도가 니오븀 분말 특성에 미치는 영향)

  • Yoon, Jae-Sik;Lee, Young-Mi;Hwang, Sun-Ho;Kim, Byung-Il
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.104-109
    • /
    • 2009
  • Niobium powder was made from potassium heptafluoroniobite ($K_2NbF_7$) as the raw material using sodium (Na) as a reducing agent based on the hunter process. The apparatus for the experiment was designed and built specifically for the present study. The niobium particle size greatly increased as the reduction temperature increased from $710^{\circ}C$ to $800^{\circ}C$. The particle size was fairly uniform, varying from $0.09{\mu}m$ to $0.4{\mu}m$ depending on the reduction temperatures. The niobium powder morphology and particle size are very sensitive to a reaction temperature in the metallothermic reduction process. The yield of niobium powder increased from 55% to 80% with a increasing a reaction temperature.