• Title/Summary/Keyword: Potassium depletion

Search Result 23, Processing Time 0.02 seconds

Effect of Ginseng on $Na^+$, $K^{+}-ATPase$ Activities of Potassium Deficient Rat Intestinal Mucosa (인삼이 칼륨결핍랫트 장점막의 $Na^+$,$K^{+}-ATPase$ 활성에 미치는 영향)

  • Lee, Myong-Hee;Kim, Nak-Doo
    • YAKHAK HOEJI
    • /
    • v.32 no.1
    • /
    • pp.62-69
    • /
    • 1988
  • We have studied the effect of fasting on $Na^+$, $K^{+}-ATPase$ activities in the rat intestinal mucosa. Rats were fasted for $18{\sim}48hr$. Intestinal microsomal fraction was prepared by the method of Robinson and ATPase activities were determined by the modified method of Fiske and Subbarow. $Na^+$, $K^{+}-ATPase$ activity was not changed after fasting for 18 and 24 hr but significantly decreased after fasting for 48 hr. Fasting over 18 to 48 hr period had no effect on the $Mg^{++}-ATPase$. Thus, it may be concluded that 48 hr fasting has inhibitory effect on rat intestinal absorptive capabilities. In order to study the effect of Ginseng on the $Na^+$, $K^{+}-ATPase$ activities of the small intestine in chronic $K^{+}-depleted$ rats, rats were fed $K^{+}-depleted$ diets for 3 weeks and Ginseng ethanol extracts were administered orally for 3 weeks concomitantly. ATPase activity was measured by the same method as fasting group. $Na^+$, $K^{+}-ATPase$ activity in the $K^{+}-depleted$ diet group was increased and Ginseng ethanol extracts inhibited the increase of enzyme activity induced by $K^{+}-depleted$ diet. Thus, it may be suggested that increase in the intestinal $Na^+$, $K^{+}-ATPase$ activity of chronic $K^{+}-depleted$ group may be due to the compensatory mechanism and administration of Ginseng with $K^{+}-depleted$ diet may be associated with inhibition of increase in the enzyme activity of the $K^{+}-depleted$ group due to the prevention of the $K^+$ loss in the $K^{+}-depletion$.

  • PDF

Effect of Atrial Natriuretic Factor on the Renal Function and Renin Release in Unanesthetized Rabbit (무마취 가토 신장기능에 미치는 Atrial Natriuretic Factor의 영향)

  • Lee, June-K.;Cho, Kyung-W.
    • The Korean Journal of Physiology
    • /
    • v.20 no.1
    • /
    • pp.103-124
    • /
    • 1986
  • Since it has been suggested that atrial receptor may be involved in the mechanism of extracellular volume regulation, it was shown that the granularity of atrial cardiocytes can be changed by water and salt depletion, and that an extract of cardiac atrial tissue, when injected intravenously into anesthetized rats, was shown to cause a large and rapid increase in renal excretion of sodium. Various natriuretic peptides were isolated and synthetized, and the effects were investigated by many workers. Most studies, however, have been carried out under anesthesia and there have teen some controversies over direct effect of the factor on the renal function. Therefore, it was attempted in this study to access the effects of an atrial extract and a synthetic natriuretic factor in unanesthetized rabbits. Intrarenal arterial infusion of atrial extract caused a rapid increase of urinary volume and excretion of sodium. Glomerular filtration rate and renal plasma flow were both increased with no change in filtration fraction. The ventricular extract produced no change in urinary excretion of electrolytes, nor in renal hemodynamics. Intrarenal infusion of synthetic atrial natriuretic factor caused increases of renal excretory rate of sodium, chloride and potassium, and $FE_{Na}$. Glomerular filtration rate, renal plasma flow increased. And free water clearance also increased. Accentuated excretory function correlated well with increased glomerular filtration rate and renal plasma flow during infusion and for 10 minutes following the cessation of the infusion. Renin secretion rate decreased during constant infusion of atrial natriuretic factor. However, no correlation was found with the changes in glomerular filtration rate, renal plasma flow, or urinary excretion of sodium. These results suggest that atrial extract or atrial natriuretic factor induces changes in renal hemodynamics, as in excretion of electrolytes either indirectly through hemodynamic changes or directly by inhibiting tubular reabsorption. At the same time, renin secretory function is affected by the factor possibly through an unknown mechanism.

  • PDF

Petrochmical study on the Volcanic Rocks Related to Depth to the Benioff Zone and Crustal Thickness in the Kyongsang Basin, Korea: A Review (경상분지 화산암류의 지화학적 연구. 섭입대(베니오프대)의 깊이와 지각의 두께)

  • Jong Gyu Sung
    • Economic and Environmental Geology
    • /
    • v.32 no.4
    • /
    • pp.323-337
    • /
    • 1999
  • Late Cretaceous to early Tertiary volcanic rocks in the Kyongsang basin exhibit high-K calc-alkaline characteristics, and originated from the magmatism related genetically to subduction of Kula-Pacific plate. They represent HFSE depletion and LlLE enrichment characteristics as shown by magmas related to subduction. Early studies on the depth of magma generation has been estimated as 180-230 km based on K-h relation should be reevaluated, because the depth of peridotite partial melting with 0.4 wt. % water is 80-120 km at subduction zone, and subducting slab in premature arc can melted even lower than 70 km. Moreover the increase of potassium contents depends on either contamination of crustal material and fluids of subducting slab or low degree of partial melting. If the inclination of subduction zone is 30 degrees and the depth to the Benioff zone is 180-230 km, the calculated distance between the volcanic zone and trench axis would be 310-400 km. It is unlikely because the distance between the Kyongsang basin and trench during late Cretaceous to early Tertiary is closer than this value and not comparable with generally-accepted models in subduction zone magmatism. $K_{55}$ of the volcanics in the Kyongsang basin is 0.3-2.3 wt.% and the average indicate that the depth ranges between 80-170 km on the diagram of Marsh, Carmichael (1974). Fractionation from garnet lherzolite, assumed the depth of 180-230km, is not consistent with the REE patterns of the volcanoes in the Kyongsang basin. Futhermore, the range of depth suggested by many workers, who studied magmatism related to subduction, imply shallower than this depth. Crustal thickness calculated by the content of CaO and $Na_2O$ is about 30 km and about 35 km, respectively. Paleo-crustal thickness during late Cretaceous to early Tertiary times in the Kyongsang basin inferred about 30 km calculated by La/Sm versus LaJYb data, which is also supported by many previous studies.

  • PDF