• Title/Summary/Keyword: Postural Control

Search Result 440, Processing Time 0.028 seconds

The Effects of Core Stability on Postural Control, Balance and Upper Motor Function in Patients with Stroke (CORE 안정성 훈련이 뇌졸중 환자의 자세조절, 균형 및 상지기능에 미치는 효과)

  • Lee, Byoung-Hee;Kim, Seong-Yeol;Lee, Jong-Soo
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.19 no.3
    • /
    • pp.69-80
    • /
    • 2009
  • Objectives : The purpose of this study was to evaluate the effects of core stability training on postural control and balance of hemiplegia patients who are difficult to control posture due to stroke. Methods : Subjects of the study were consisted of 25 adult hemiplegia patients(experimental 12, control 13) who were receiving rehabilitation therapy in hospital. Its group had a core stability training program by a physical therapists for 40 minutes, five times a week for nine-week period. Measurements of postural assessment scale for stroke(PASS), berg balance scale(BBS) and manual function test(MFT) were evaluated at initial presentation(pretest) and after completion of the each therapy program(posttest). Independent t-test and paired t-test was utilized to detect the mean difference between the groups. Results : Firstly, the result of PASS showed that postural control was significantly increased after the completion of core stability training(p<.01). Secondly, the result of BBS showed that balance control was significantly increased after the completion of core stability training(p<.01) and general physical therapy(p<.01). Lastly, the result of MFT showed that upper extremity's motor function was significantly increased after the completion of core stability training(p<.001). Conclusions : This study showed that core stability training is an effective treatment strategy on postural control, balance and upper extremity's motor function.

Effects of virtual reality-based core stabilization exercise on upper extremity function, postural control, and depression in persons with stroke

  • Kim, Jee-Won;Kim, Jung-Hee;Lee, Byoung-Hee
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.3
    • /
    • pp.131-139
    • /
    • 2020
  • Objective: The purpose of this study was to evaluate the effect of virtual reality (VR)-based core stabilization exercise on upper extremity function, postural control, and depression among persons with stroke with hemiplegia. Design: Randomized controlled trial. Methods: This study was conducted with the inclusion of 24 participants and were randomly assigned to either the VR-based trunk stability exercise group (n=12) or control group (n=12). The VR-based trunk stability exercise group performed core stabilization exercises in a VR environment for 30 minutes. Meanwhile, the control group conducted general core stabilization exercises for 30 minutes. The participants trained 3 times a week for 4 weeks. The manual functional test (MFT), Box and Block Test (BBT), Berg Balance Scale (BBS), Trunk Impairment Scale (TIS), the Geriatric Depression Scale (GDS) were used to assess all participants before and after the intervention. Results: The VR-based core stabilization exercise group had a significant improvement in upper extremity function (MFT, BBT) and postural control (BBS) compared with the control group (p<0.05). The VR-based core stabilization exercise showed a significant difference after intervention in the TIS and GDS scores (p<0.05), but they did not significantly differ between the two groups. Conclusions: The result showed that VR-based core stabilization exercise can be effective in improving upper extremity function and postural control among patients with stroke more than the sole application of general physical therapy.

Effect of Sensorimotor Training Using a Flexi-bar on Postural Balance and Gait Performance for Children With Cerebral Palsy: A Preliminary Study

  • Ga, Hyun-you;Sim, Yon-ju;Moon, Il-young;Yun, Sung-joon;Yi, Chung-hwi
    • Physical Therapy Korea
    • /
    • v.24 no.2
    • /
    • pp.58-65
    • /
    • 2017
  • Background: Children with cerebral palsy (CP) have impaired postural control, but critically require the control of stability. Consequently, therapeutic interventions for enhancing postural control in children with CP have undergone extensive research. One intervention is sensorimotor training (SMT) using a Flexi-bar, but this has not previously been studied with respect to targeting trunk control in children with CP. Objects: This study was conducted to determine the effect of SMT using a Flexi-bar on postural balance and gait performance in children with CP. Methods: Three children with ambulatory spastic diplegia (SD) participated in the SMT program by using a Flexi-bar for forty minutes per day, three times a week, for six weeks. Outcome variables included the pediatric balance scale (PBS), trunk control movement scale (TCMS), 10 meter walking test (10MWT), and 3-dimensional movement coordination measurement. Results: The SMT provided no statistically significant improvement in PBS, TCMS, 10MWT, or 3-dimensional movement coordination measurement. However, positive changes were observed in individual outcomes, as balance and trunk control movement were improved. Conclusion: SMT using a Flexi-bar may be considered by clinicians as a potential intervention for increasing postural balance and performance in children with SD. Future studies are necessary to confirm the efficacy of Flexi-bar exercise in improving the functional activity of subjects with SD.

The effect of whole body vibration training on postural sway in patients with spinal cord injury: a pilot study

  • Asakawa, Yasuyoshi;Lee, Myung-Mo;Song, Chang-Ho
    • Physical Therapy Rehabilitation Science
    • /
    • v.2 no.2
    • /
    • pp.70-74
    • /
    • 2013
  • Objective: The aim of this study was to determine the impact of the application of whole body vibration training (WBV) on the balance ability of patients with an American Spinal Injury Association (ASIA) type C or D spinal cord injury. Design: Randomized controlled trial. Methods: Twelve patients with spinal cord injury were enrolled in this study. The participants were randomized to an experimental group (n=6) or control group (n=6). The subjects in the experimental group received WBV exercise and the control group received the sham exercise without vibration. The vibrations were adjusted vertically to the patient at a 30 Hz frequency and 3 mm amplitude. The whole body vibration lasted for 16 minutes in total including 5-minutes warm-up and cool-down at the beginning and end of the program, respectively. The static sitting balance ability was assessed by measuring the postural sway while sitting on the force plate with the eyes opened or closed. Postural sway length was measured for 30 seconds with a self-selected comfortable position. Results: In the static balance test, the anterio-posterior, medio-lateral, and total postural sway length with the eyes open and closed was improved significantly before and after the intervention in the experimental group (p<0.05). The experimental group showed significantly more improvement than the control group (p<0.05). Conclusions: Our results demonstrated that WBV training has a positive effect on improving static sitting balance and enhanced control of postural sway in patients with an ASIA-C or D type spinal cord injury.

Association between one-leg standing ability and postural control in persons with chronic stroke

  • Choi, Bora;Hwang, Sujin;Kim, Eunjeong
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.3
    • /
    • pp.165-170
    • /
    • 2020
  • Objective: To investigate the association between one-leg standing ability and postural control for chronic hemiparetic stroke. Design: Cross-sectional study. Methods: Forty individuals who had a first diagnosis of stroke with hemiparesis before six months and over had participated in this study. To analyze the relationship between one-leg standing ability and postural control in the participants, six clinical measurement tools were used for assessment, including the Timed-Up-and-Go (TUG) test, Berg Balance Scale (BBS), Dynamic Gait Index (DGI), Fugl-Meyer Assessment (FMA), 5 times sit-to-stand (5TSTS) and one-leg standing (OLS). Results: After analyzation, the OLS scores in the more-affected side showed significant positive correlations with BBS scores (r=0.469, p<0.01), DGI scores (r=0.459, p<0.01).and FMA scores (r=0.425, p<0.01). The OLS scores in the more-affected side showed significant negative correlations with TUG score (r=-0.351, p<0.05). The OLS score in the less-affected side showed significant positive correlations with BBS scores (r=0.485, p<0.01), DGI scores (r=0.488, p<0.01) and FMA score (r=0.352, p<0.05). The OLS scores in the less-affected side showed significant negative correlation with TUG scores (r=-0.392, p<0.05) and 5TSTS (r= -0.430, p<0.01). The OLS scores in the more-affected side showed significant positive correlations with the OLS scores in less-affected side (r=0.712, p<0.01). Conclusions: The results of the study suggest that the OLS time may be moderately correlated with static and dynamic postural stabilities and motor recovery following stroke. This study also suggests that the OLS test is as a simple clinical tool for predicting postural control performance for individuals with chronic hemiparetic stroke.

The Relationship Between Postural Control, ADL Function, Muscle Tone, and Functional Improvement in Chronic Stroke Patients (만성 뇌졸중 환자의 자세 조절과 일상생활동작, 근긴장도, 그리고 기능증진과의 관계)

  • An, Seung-Heon;Seo, Young-Jong;Park, Chang-Sik
    • Physical Therapy Korea
    • /
    • v.14 no.1
    • /
    • pp.64-73
    • /
    • 2007
  • The purpose of this study was to find any correlations among Postural Assessment Scale for Stroke (PASS), Modified Barthel Index (MBI), Tone Assessment Scale (TAS), Motor Assessment Scale-Gait (MAS-G), Fugl Meyer-Balance (FM-B), and to predict MBI from subscales of the PASS. The subjects were 41 stroke patients of the Korea National Rehabilitation Center in Seoul. The main outcome measures were postural control (PASS), gait (MAS-G), Balance (FM-B), Tone (TAS), ADL (MBI). The data was analyzed using the Pearson product correlation. PASS scale was used between other clinical and instrumental indexes, multiple stepwise regression analyses were performed to identify prognostic factors for ADL incline, and Cronbach's alpha coefficient was used to identify internal consistency on PASS scale. The results of this study areas follows: 1. The highest level was sitting without support, the lowest level was standing on paretic leg on PASS scale. The highest level was chair/bed transfer, the lowest level was bathing on MBI. 2. All items of the PASS, except postural tone were significantly correlated with Gait, Balance, MBI (p<.01), 3. The Internal Consistency (Cronbach's alpha coefficient=.85) was very high, indicating that the PASS is homogeneous and is likely to produce consistent response. Furthermore, the sums of maintaining position items and of changing-position items were strongly correlated (r=.64, p<.05) and there were significant correlations between sums of PASS, sums of maintaining position items (r=.87, p<.01), and changing-position items (r=.93, p<.01). 4. The standing without support of the PASS items was the strongest variance ($R^2$=.85) of the predicting ADL function. These findings provide strong evidence of the predictive value of the postural control on gait, Balance, ADL function in stroke patients and to can provide a reference for the successful therapeutic program and more improved functional recovery.

  • PDF

Effects of Localized Muscle Fatigue and Whole Body Fatigue on Postural Control during Single-Leg Stance

  • Youm, Chang-Hong;Shin, Joong-Dal;Lee, Joong-Sook;Seo, Kook-Eun;Park, Jong-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.2
    • /
    • pp.111-119
    • /
    • 2014
  • The purpose of this study was to investigate the effects of localized muscle fatigue and whole body fatigue on postural control during single-leg stance after impairment induced by heel raise and the Harvard step test. Thirty-eight university students (19 men: age, $20.1{\pm}0.2$ yrs; height, $175.0{\pm}5.23cm$; weight, $66.8{\pm}5.6kg$; body mass index, $21.8{\pm}1.7kg/m^2$, 19 women: age, $20.6{\pm}1.1yrs$ ; height, $163.6{\pm}6.7cm$; weight, $58.8{\pm}4.6kg$; body mass index, $22.0{\pm}2.2kg/m^2$) were participated in this study. Subjects performed a series of single-leg postural tasks prior to, following, and 24 hours after completing: heel raise or the Harvard step test. This study showed that the root mean squared distance and velocity in the anteroposterior and mediolateral planes of the center of pressure decreased significantly due to heel raise exercise-induced fatigue. Furthermore, the root mean squared distance in the anteroposterior and mediolateral planes, and the 95% confidence ellipse area of the center of pressure also decreased significantly 24 hours after completing the Harvard step test. In conclusion, this study showed that both heel raise exercise- and Harvard step exercise-induced fatigue affects postural control during single-leg stance in AP and ML planes. Furthermore, this study suggests that changes in the postural control strategy may have occurred after the fatigue protocols during single-leg stance. Also vision can attenuate the postural deficits associated with the fatigues. In order to clarify these results, further studies using other equipment and variables are necessary.