• Title/Summary/Keyword: Postoperative Lung Function

Search Result 80, Processing Time 0.026 seconds

Comparison of Predicted Postoperative Lung Function in Pneumonectomy Using Computed Tomography and Lung Perfusion Scans

  • Kang, Hee Joon;Lee, Seok Soo
    • Journal of Chest Surgery
    • /
    • v.54 no.6
    • /
    • pp.487-493
    • /
    • 2021
  • Background: Predicting postoperative lung function after pneumonectomy is essential. We retrospectively compared postoperative lung function to predicted postoperative lung function based on computed tomography (CT) volumetry and perfusion scintigraphy in patients who underwent pneumonectomy. Methods: Predicted postoperative lung function was calculated based on perfusion scintigraphy and CT volumetry. The predicted function was compared to the postoperative lung function in terms of forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1), using 4 parameters: FVC, FVC%, FEV1, and FEV1%. Results: The correlations between postoperative function and predicted function based on CT volumetry were r=0.632 (p=0.003) for FVC% and r=0.728 (p<0.001) for FEV1%. The correlations between postoperative function and predicted postoperative function based on perfusion scintigraphy were r=0.654 (p=0.002) for FVC% and r=0.758 (p<0.001) for FEV1%. The preoperative Eastern Cooperative Oncology Group (ECOG) scores were significantly higher in the group in which the gap between postoperative FEV1 and predicted postoperative FEV1 analyzed by CT was smaller than the gap analyzed by perfusion scintigraphy (1.2±0.62 vs. 0.4±0.52, p=0.006). Conclusion: This study affirms that CT volumetry can replace perfusion scintigraphy for preoperative evaluation of patients needing pneumonectomy. In particular, it was found to be a better predictor of postoperative lung function for poor-performance patients (i.e., those with high ECOG scores).

Prediction of Postoperative Pulmonary Function Following Thoracic Operations - Perfusion Lung Scanning Method - (폐관류스캔에 의한 폐절제술후 폐기능 예측)

  • Park, Guk-Yang;Yu, Hoe-Seong;Kim, Ju-Hyeon
    • Journal of Chest Surgery
    • /
    • v.19 no.2
    • /
    • pp.209-216
    • /
    • 1986
  • The purpose of this study is to predict postoperative lung function by perfusion lung scanning method. 40 patients who underwent lobectomy or pneumonectomy between 1983-1985 were analyzed. Mean preoperative FEV1 was 2.36 L in lobectomy cases and 1.73 L in pneumonectomy cases. Preoperative and postoperative lung function were measured by routine spirometry in sitting position. Perfusion lung scanning was performed by 99mTc-MAA radioisotope. Postoperative FEV1 and VC were predicted by the formula; Postoperative FEV1 [VC]=Preoperative FEV1 [VC] x percent function of regions of lung not to be resected. In this study, I concluded that perfusion lung scanning is a simple and useful method to predict postoperative ventilatory function after pneumonectomy of lobectomy.

  • PDF

Use of Quantitative CT to Predict Postoperative Lung Function (Comparison of Quantitative CT and Perfusion Lung Scan) (폐절제술후의 폐기능 예측에 대한 나선식 정량적 CT의 유용성 (나선식 정량적 CT와 폐관류스캔과의 비교))

  • 이조한
    • Journal of Chest Surgery
    • /
    • v.33 no.10
    • /
    • pp.798-805
    • /
    • 2000
  • Background : the prediction on changes in the lung function after lung surgery would be an important indicator in terms of the operability and postoperative complications. In order to predict the postoperative FEV1 - the commonly used method for measuring changes in lung function- a comparison between the quantitative CT and the perfusion lung scan was made and proved its usefulness. Material and Method : The subjects included 22 patients who received perfusion lung scan and quantitative CT preoperatively and with whom the follow-up of PFT were possibles out of the pool of patients who underwent right lobectomy or right pneumonectomy between June of 1997 and December of 1999. The FEV1 and FVC were calibrated by performing the PFT on each patient and then the predicted FEV1 and FVC were calculated after performing perfusion lung scan and quantitative CT postoperatively. The FEV1 and FVC were calibrated by performing the PFT after 1 week and after 3 momths following the surgery. Results : There was a significant mutual scan and the actual postoperative FEV1 and FVC at 1 week and 3 months. The predicted FEV1 and FVC(pneumonectomy group : r=0.962 and r=0.938 lobectomy group ; r=0.921 and r=913) using quantitative CT at 1 week postoperatively showed a higher mutual relationship than that predicted by perfusion lung scan(pneumonectomy group : r=0.927 and r=0.890 lobectomy group : r=0.910 and r=0.905) The result was likewise at 3 months postoperatively(CT -pneumonectomy group : r=0.799 and r=0.882 lobectomy group : r=0.934 and r=0.932) Conclusion ; In comparison to perfusion lung scan quantitative CT is more accurate in predicting lung function postoperatively and is cost-effective as well. Therefore it can be concluded that the quantitative CT is an effective method of replacing the perfusion lung scan in predicting lung function post-operatively. However it is noted that further comparative analysis using more data and follow-up studies of the patients is required.

  • PDF

Evaluation of the Predictive Pulmonary Function after Pneumonectomy Using Perfusion Lung Scan (전폐절제술시 폐관류스캔을 이용한 폐기능의 예측에 대한 평가)

  • Kim, Gil-Dong;Jeong, Gyeong-Yeong
    • Journal of Chest Surgery
    • /
    • v.28 no.4
    • /
    • pp.371-375
    • /
    • 1995
  • Surgical resection of lung cancer or other disease is recently required in patients with severely impaired lung function resulting from chronic obstructive pulmonary disease or disease extension. So prediction of pulmonary function after lung resection is very important in thoracic surgeon. We studied the accuracy of the prediction of postoperative pulmonary function using perfusion lung scan with 99m technetium macroaggregated albumin in 22 patients who received the pneumonectomy. The linear regression line derived from correlation between predicting[X and postoperative measured[Y values of FEV1 and FVC in patients are as follows: 1 Y[ml =0.713X + 381 in FEV1 [r=0.719 ,[P<0.01 2 Y[ml =0.645X + 556 in FVC [r=0.675 ,[P<0.01 In conclusion,the perfusion lung scan is noninvasive and very accurate for predicting postpneumonectomy pulmonary function.

  • PDF

전산화 폐관류주사를 이용한 폐절제술후 폐기능의 예측

  • Oh, Duck-Jin;Lee, Young;Lim, Seung-Pyeung;Yu, Jae-Hyun;Na, Myung-Hoon
    • Journal of Chest Surgery
    • /
    • v.29 no.8
    • /
    • pp.897-904
    • /
    • 1996
  • A preoperative prediction of postoperative pulmonary function after the pulmonary resection should be made to prevent serious complications and postoperative mortality. There are several methods to predict postoperative lung function but the 99m7c-MAA perfusion lung scan is known as simple, inexpensive and easily tolerated method for patients. We studied the accuracy of the perfusion lung scan in predicting postoperative lung function on 34 patients who received either the resection of one lobe(17 patients) or 2 lobes(2 patients) or pneumonictomy(15 patients). We performed pulmonary function test and lung scan immediately before the operation and calculated the postoperative lung function by substracting the regional lung function which will be rejected. We compared this predictive value to the observed pulmonary function which was done 20 days after the surgery. We also compared the data achieved from 12 patients ho received open thoracotomy due to intrathoracic disease that are not confined in the lung. The correlation coefficient between the predicted value and observed value of FEVI .0 was 0.423, FVC was 0.557 in the pneumonectomy group and FEVI . 0 was 0.693, FVC was 0.591 in the lobectomy group. The correlation coefnclent between the'postoperative value and preoperative value of FEVI .0 was 0.528, FVC was 0.502 in the resectional group and FEVI .0 was 0.871, FVC was 0.896 in the comparatives. We concluded that the perfusion lung scan is accllrate in predicting post-resectional pulmonary function.

  • PDF

Evaluation of Prospective Pulmonary Function Change for Pulmonary Resection Using Quantitative Perfusion Lung Scan (폐절제술시 정량 폐관류스캔을 이용한 폐기능 변화 예견에 대한 평가)

  • 김용진
    • Journal of Chest Surgery
    • /
    • v.19 no.2
    • /
    • pp.188-196
    • /
    • 1986
  • Spirometry and regional function studies using 99m-Technetium were performed preoperatively to predict postoperative pulmonary function change in 34 patients who had various pulmonary resectional procedures at the Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital. Between two months and fourteen months postoperation all the patients were reinvestigated with spirometry and clinical examination to evaluate their functional respiratory status. The postoperative obtained values, especially forced vital capacity [FVC] and forced expiratory volume in one second [FEV1] among the other parameters were compared with the postoperative predicted values. Estimated values of FVC and FEV1 derived from preoperative spirometry and quantitative perfusion lung scan correlated well with the measured postoperative values. The linear regression line derived from correlation between postoperative estimated[X] and postoperative measured[Y] values of FVC and FEV1 in all patients are as follows; 1. Y=0.76x + 0.39 in correlation of FVC [r=0.91] 2. Y=0.88x + 0.17 in correlation of FEV1 [r=0.96],br> This method of estimation was one of the best methods of predicting postoperative pulmonary function change and valuable in determining the extent of safe resection and postoperative prognosis to a poor risk patient with chronic obstructive lung disease.

  • PDF

Critical Care Management Following Lung Transplantation

  • Jeon, Kyeongman
    • Journal of Chest Surgery
    • /
    • v.55 no.4
    • /
    • pp.325-331
    • /
    • 2022
  • Postoperative critical care management for lung transplant recipients in the intensive care unit (ICU) has expanded in recent years due to its complexity and impact on clinical outcomes. The practical aspects of post-transplant critical care management, especially regarding ventilation and hemodynamic management during the early postoperative period in the ICU, are discussed in this brief review. Monitoring in the ICU provides information on the patient's clinical status, diagnostic assessment of complications, and future management plans since lung transplantation involves unique pathophysiological conditions and risk factors for complications. After lung transplantation, the grafts should be appropriately ventilated with lung protective strategies to prevent ventilator-induced lung injury, as well as to promote graft function and maintain adequate gas exchange. Hypotension and varying degrees of pulmonary edema are common in the immediate postoperative lung transplantation setting. Ventricular dysfunction in lung transplant recipients should also be considered. Therefore, adequate volume and hemodynamic management with vasoactive agents based on their physiological effects and patient response are critical in the early postoperative lung transplantation period. Integrated management provided by a professional multidisciplinary team is essential for the critical care management of lung transplant recipients in the ICU.

Change of Pulmonary Function after Pulmonary Resection (폐절제술후 폐기능 변화에 관한 연구)

  • 김용진
    • Journal of Chest Surgery
    • /
    • v.18 no.3
    • /
    • pp.517-528
    • /
    • 1985
  • Pulmonary function studies today are generally accepted as an integral part of the evaluation of poor-risk patients who are to have pulmonary surgery. The effect of various pulmonary surgery on lung function was investigated in 54 patients in whom comprehensive lung function test were performed before and between 2 months and 14 months after operation at the Department of Thoracic Surgery, Seoul National University Hospital. According to the result of analysis, the effect of pulmonary resection on forced flow rate was keeping with the change of lung volume, and the preoperative level of ventilatory function plays a major role in determining postoperative loss of functioning lung. Although all measures of expiratory flow [FVC, FEV1, FEFO.2-1.2, MEF50, FEF25-75] have the same percentage of reproducibility, but FEV1 shows most sensitive, reliable linear correlation with the functioning pulmonary tissue loss than other parameters. The linear regression lines derived from the correlation between preoperative [X] and postoperative [Y] FEV1 on various surgical procedures were as follows: 1. Y = 0.57X 0.03. in pneumonectomy group of lung cancer[r=0.84]. 2. Y = 0.56X + 0.33. in lobectomy group of lung cancer[r=0.79]. 3. Y = 0.69X + 0.25. in lobectomy group of pulmonary infection[r=0.91].

  • PDF

Prediction of Postoperative Lung Function in Lung Cancer Patients Using Machine Learning Models

  • Oh Beom Kwon;Solji Han;Hwa Young Lee;Hye Seon Kang;Sung Kyoung Kim;Ju Sang Kim;Chan Kwon Park;Sang Haak Lee;Seung Joon Kim;Jin Woo Kim;Chang Dong Yeo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.86 no.3
    • /
    • pp.203-215
    • /
    • 2023
  • Background: Surgical resection is the standard treatment for early-stage lung cancer. Since postoperative lung function is related to mortality, predicted postoperative lung function is used to determine the treatment modality. The aim of this study was to evaluate the predictive performance of linear regression and machine learning models. Methods: We extracted data from the Clinical Data Warehouse and developed three sets: set I, the linear regression model; set II, machine learning models omitting the missing data: and set III, machine learning models imputing the missing data. Six machine learning models, the least absolute shrinkage and selection operator (LASSO), Ridge regression, ElasticNet, Random Forest, eXtreme gradient boosting (XGBoost), and the light gradient boosting machine (LightGBM) were implemented. The forced expiratory volume in 1 second measured 6 months after surgery was defined as the outcome. Five-fold cross-validation was performed for hyperparameter tuning of the machine learning models. The dataset was split into training and test datasets at a 70:30 ratio. Implementation was done after dataset splitting in set III. Predictive performance was evaluated by R2 and mean squared error (MSE) in the three sets. Results: A total of 1,487 patients were included in sets I and III and 896 patients were included in set II. In set I, the R2 value was 0.27 and in set II, LightGBM was the best model with the highest R2 value of 0.5 and the lowest MSE of 154.95. In set III, LightGBM was the best model with the highest R2 value of 0.56 and the lowest MSE of 174.07. Conclusion: The LightGBM model showed the best performance in predicting postoperative lung function.

Prognostic Impact of Postoperative Complications in High-Risk Operable Non-small Cell Lung Cancer

  • Lee, Seungwook;Roknuggaman, Md;Son, Jung A;Hyun, Seungji;Jung, Joonho;Haam, Seokjin;Yu, Woo Sik
    • Journal of Chest Surgery
    • /
    • v.55 no.1
    • /
    • pp.20-29
    • /
    • 2022
  • Background: Patients with high-risk (HR) operable non-small cell lung cancer (NSCLC) may have unique prognostic factors. This study aimed to evaluate surgical outcomes in HR patients and to investigate prognostic factors in HR patients versus standard-risk (SR) patients. Methods: In total, 471 consecutive patients who underwent curative lung resection for NSCLC between January 2012 and December 2017 were identified and reviewed retrospectively. Patients were classified into HR (n=77) and SR (n=394) groups according to the American College of Surgeons Oncology Group criteria (Z4099 trial). Postoperative complications were defined as those of grade 2 or higher by the Clavien-Dindo classification. Results: The HR group comprised more men and older patients, had poorer lung function, and had more comorbidities than the SR group. The patients in the HR group also experienced more postoperative complications (p≤0.001). More HR patients died without disease recurrence. The postoperative complication rate was the only significant prognostic factor in multivariable Cox regression analysis for HR patients but not SR patients. HR patients without postoperative complications had a survival rate similar to that of SR patients. Conclusion: The overall postoperative survival of HR patients with NSCLC was more strongly affected by postoperative complications than by any other prognostic factor. Care should be taken to minimize postoperative complications, especially in HR patients.