• Title/Summary/Keyword: Postharvest technology

Search Result 1,062, Processing Time 0.022 seconds

Postharvest technologies for fruits and vegetables in South Asian countries: a review

  • Faqeerzada, Mohammad Akbar;Rahman, Anisur;Joshi, Rahul;Park, Eunsoo;Cho, Byoung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.325-353
    • /
    • 2018
  • Agricultural systems in South Asian countries are dominated by smallholder farmers. Additionally, these farmers have limited access to pre- and post-harvest technologies due to their high initial cost. The lack of these technologies in postharvest handling is responsible for 20% to 44% of fruit and vegetable losses. These high losses are largely the result of a generally weak basic postharvest infrastructure for the preservation of products, which avoids damage from improper handling, transportation, packaging, and storage. High postharvest losses of products negatively affect food availability, food security, and nutrition, as the producer is able to sell less of the farm yield and the net availability of these food commodities for consumption is reduced. An underlying cause of these postharvest losses is the limited awareness and knowledge bases of stakeholders (researchers, farmers, governments, non-governmental organizations, and merchants) in the traditional supply chains in which these losses occur. The analysis presented in this paper explores the state of postharvest practice in South Asian countries and discusses options for low-cost postharvest technologies in the region that can support small-scale farmers and provide a viable pathway for supply to the market, joining with modern value chains and bringing about individual and regional reduction in postharvest losses of fruits and vegetables. The improvement of basic and simple low-cost technologies through precise research efforts has the potential to prevent such huge losses of products, and help meet the ever-increasing demand for food in South Asian countries.

Hexanal Vapor Induced Resistance against Major Postharvest Pathogens of Banana (Musa acuminata L.)

  • Dhakshinamoorthy, Durgadevi;Sundaresan, Srivignesh;Iyadurai, Arumukapravin;Subramanian, Kizhaeral Sevathapandian;Janavi, Gnanaguru Janaki;Paliyath, Gopinathan;Subramanian, Jayasankar
    • The Plant Pathology Journal
    • /
    • v.36 no.2
    • /
    • pp.133-147
    • /
    • 2020
  • Hexanal, a C-6 aldehyde has been implicated to have antimicrobial properties. Hence, this study was conducted to determine the antifungal activities of hexanal vapor against major postharvest pathogens of banana viz., Colletotrichum gloeosporioides and Lasiodiplodia theobromae. The pathogens were cultured in vitro and exposed to hexanal vapor at 600, 800, 1,000 and 1,200 ppm. Mycelial growth of both fungal pathogens were inhibited completely at 800 ppm and the incidence of anthracnose and stem-end rot diseases reduced by 75.2% and 80.2%, respectively. The activities of peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase and glucanase had transiently increased in hexanal vapor treated banana by 5 to 7 days and declined thereafter. Postharvest treatment of banana with hexanal vapor resulted in phospholipase D inhibition and also resulted in cell wall thickening of the treated fruit, which impeded the penetration of the pathogenic spores. This was further confirmed by scanning electron micrographs. The defense-related protein intermediaries had increased in hexanal vapor treated banana fruit, which suggests induced resistance against C. gloeosporioides and L. theobromae, via., the phenylpropanoid pathway which plays a significant role in hindering the pathogen quiescence. Delayed ripening due to inhibition of phospholipase D enzyme, inhibition of mycelial growth and induced systemic resistance by defense enzymes collectively contributed to the postharvest disease reduction and extended shelf life of fruit.

Dose Effect of Phytosanitary Irradiation on the Postharvest Quality of Cut Flowers

  • Kwon, Song;Kwon, Hye Jin;Ryu, Ju Hyun;Kim, Yu Ri
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.2
    • /
    • pp.171-178
    • /
    • 2020
  • The present study was conducted to determine the effects of electron beam irradiation on the postharvest quality of cut flowers. Cut flowers were irradiated with electron beam at 100, 200, 400, 600, 800, 1,000, and 2,000 Gy with a 10 MeV linear electron beam accelerator to evaluate their irradiation tolerance. Postharvest quality was determined by monitoring fresh weight loss, flower longevity, flower diameter, flowering rate, visual quality of flowers and leaves, and chlorophyll content. Cut flowers showed a radiation-induced damage with increasing the irradiation dose. Flower longevity and fresh weight of cut flowers decreased when the irradiation dose was increased. Flower bud opening was also inhibited in a dose-dependent manner. The effective irradiation doses for 10% reduction of postharvest quality (ED10) values were 144.4, 451.6, and 841.2 Gy in the 'Medusa' lily, 'Montezuma' carnation, and 'Rosina White' eustoma, respectively. Although tolerance of cut flowers to electron beam irradiation vary according to species, cultivars, or maturity stage conditions, it is conceivable that 'Montezuma' carnation and 'Rosina White' eustoma could be tolerated and maintained overall postharvest quality up to 400 Gy, the generic irradiation dose approved by the Animal and Plant Health Inspection Service (APHIS) and the International Plant Protection Convention (IPPC) for postharvest phytosanitary treatments.

Quality evaluations of bell pepper in cold system combined with TEM (thermoelectric materials) and PCM (phase change material) (PCM을 장착한 열전소자 냉각시스템의 저장 중 피망의 품질 평가)

  • Sung, Jung-Min;Kim, So-Hee;Kim, Byeong-Sam;Kim, Jong-Hoon;Kim, Ji-Young;Kwon, Ki-Hyun
    • Food Science and Preservation
    • /
    • v.23 no.4
    • /
    • pp.471-478
    • /
    • 2016
  • For the distribution of fresh produce, the thermoelectric cooling system combined with thermo electric materials (TEM) and phase change material (PCM) was studied. The PCM used this study was produced by in-situ polymerization technology which referred microencapsulation of hydrocarbon (n-tetradecane and n-hexadecane). In this study, quality characteristics of bell peppers in thermoelectric cooling system combined with TEM and PCM were analyzed and control was placed in an EPS (expanded polystyrene) box. As a result of quality characteristics analysis, weight of bell peppers decreased and moisture content of bell peppers was 90.96~94.43% during storage. Vitamin C content of bell pepper decreased during storage and reduction ratio of control was higher than that of BPT-5 treatment(bell pepper in thermoelectric cooling system with PCM which is kept the temperature at $5^{\circ}C$). The result of color value, on 21 day, ${\Delta}E$ value of BPT-5 treatment was 5.05 while that of control was 41.8. On 21 day, total bacteria count of BPT-5 treated bell pepper shown less than that of control. In conclusion, it suggested that the thermoelectric cooling system combined with PCM improved quality of fresh produce during transportation and storage.

Recent research trends of post-harvest technology for king oyster mushroom (Pleurotus eryngii) (큰느타리버섯 수확후 관리기술 최근 연구 동향)

  • Choi, Ji-Weon;Yoon, YoeJin;Lee, Ji-Hyun;Kim, Chang-Kug;Hong, Yoon-Pyo;Shin, Il Sheob
    • Journal of Mushroom
    • /
    • v.16 no.3
    • /
    • pp.131-139
    • /
    • 2018
  • The king oyster mushroom (Pleurotus eryngii) is widely consumed because of its flavor, texture, and its functional properties such as antioxidant activity and prebiotic effects. However, long-term product storage and transportation (e.g., export) are difficult because of its limited durability. The shelf-life of king oyster mushroom is affected by environmental factors such as temperature, humidity, gas composition, and ventilation, which may affect sensory characteristics including respiration rate, texture, moisture, flavor, color, and pH. The major problems regarding storage of mushrooms are browning, flavor changes, and softening. To address these problems, novel preservation techniques were developed, and more durable variants were bred. Different drying methods, gamma irradiation, chitosan coating, modified atmosphere (MA) packaging, and controlled atmosphere (CA) storage were evaluated in order to extend the shelf-life of king oyster mushrooms. Freeze drying showed better results for the preservation of mushrooms than other drying methods. Irradiation with 1 kGy was more effective for extending mushroom shelf-life than higher doses. The preservative performance of chitosan-based films was improved by combining the compound with other hydrocolloids, such as oil, protocatechuic acid, and wax. The CA storage conditions recommended for king oyster mushrooms are 5kPa $O_2$ and 10 to 15kPa $CO_2$ at temperatures below $10^{\circ}C$. Active MA packaging with microperforated PP film was also effective for maintaining quality during storage.

Potential of the Volatile-Producing Fungus Nodulisporium sp. CF016 for the Control of Postharvest Diseases of Apple

  • Park, Myung-Soo;Ahn, Ji-Ye;Choi, Gyung-Ja;Choi, Yong-Ho;Jang, Kyoung-Soo;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.253-259
    • /
    • 2010
  • In vitro and in vivo mycofumigation effects of the volatileproducing fungus Nodulisporium sp. CF016 isolated from stem of Cinnamomum loureirii and the role of its volatile compounds were investigated against phytopathogenic fungi. The volatile compounds produced by Nodulisporium sp. CF016 inhibited and killed a wide range of plant and storage pathogens including to Pythium ultimum, Rhizoctonia solani, Fusarium oxysporum, Phytophthora capsici, Sclerotinia sclerotiorum, Colletotrichum coccodes, Magnaporthe oryzae, Alternaria panax, Botrytis cinerea and Penicillium expansum. Mycofumigation with wheat bran-rice hull cultures of Nodulisporium sp. CF016 showed in vivo antifungal activity against gray mold caused by B. cinerea and blue mold caused by P. expansum of apple. The most abundant volatile compound produced by Nodulisporium sp. CF016 was $\beta$-elemene followed by 1-methyl-1,4-cyclohexadiene, $\beta$-selinene and $\alpha$-selinene. Nodulisporium sp. CF016 could be an attractive mycofumigant in controlling postharvest diseases of various fruits including apple.

A Review of Technologies to Prolong the Shelf Life of Fresh Tropical Fruits in Southeast Asia

  • Kusumaningrum, Dewi;Lee, Seung-Hyun;Lee, Wang-Hee;Mo, Changyeun;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.40 no.4
    • /
    • pp.345-358
    • /
    • 2015
  • Southeast Asia, a typical tropical region, plays an important role in exporting a variety of fruits worldwide. The market for fresh fruits has been growing consistently, and this is a chance for Southeast Asian countries to increase their national income. However, export of tropical fruits has limitations such as a short shelf life and difficulty in maintaining the quality because of tropical climate conditions and undeveloped postharvest technologies in Southeast Asia. An important objective for developing postharvest technologies is to extend the shelf life of fresh fruits without deterioration in fruit quality. Therefore, it is essential to determine factors that affect the shelf life of fruits. The shelf life of tropical fruits is significantly dependent on the inherent properties of the fruits, extrinsic conditions, postharvest treatment, and microbial contamination. Recently, Southeast Asian countries have supported agricultural research groups for developing new postharvest technologies and minimizing postharvest losses and maintaining export fruit quality so that the total sales of tropical fruit farms can increase. This review introduces how the primary factors for extending the shelf life of tropical fruits can be determined and discusses the development of postharvest technologies for tropical fruits in Southeast Asian countries.

Systematic Postharvest Quality Management Technology to Improve Marketability of Fresh Ginseng for Export (수출용 수삼 수확후 품질관리기술 체계화)

  • Ji Hyun Lee;Ji-Weon Choi;Min Sun Chang;Sooyeon Lim;Haejo Yang;Il Sheob Shin
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.80-80
    • /
    • 2020
  • 인삼(수삼)은 장기 유통할 때 품질관리에 어려움을 겪고 있고 이는 잘못된 저장, 세척 등의 기술에서 비롯되는 것으로 포장 기술만으로는 고품질 수삼 유통을 실현하기 어렵다. 따라서 연구결과를 토대로 수출용 인삼 수확후 품질관리 과정을 정리하여 매뉴얼화 하였다. 인삼의 수확후 생리적 특성과 품질저하 요인은 물론 수확에서 저장, 세척·건조, 상품성 향상 포장 방법, 냉장컨테이너 적재, 저온 수송 및 판매 시 주의사항 등을 기술하였다. 수삼의 유통 중 손실율에 가장 크게 영향을 미치는 요인은 물러짐과 곰팡이 발생에 의한 부패, 뇌두부위 출아에 의한 상품가치 하락으로 나타났다. 출아는 수확 시기에 따라 다르게 나타나 가을수확 수삼에서는 저장기간 뇌두부위 출아는 전혀 발생하지 않았고, 봄수확 수삼의 경우 수확시기가 늦으면 뇌두 출아가 증가하는 경향을 보였다. 부패 병원균은 25℃ 운송 시 Fusarium spp.가 15, 5, 1℃ 운송 시 Botrytis spp.가 주를 이루었다. 포장단위를 5kg 대포장과 500g 소포장으로 하였을 때 소포장의 물러짐 현상이 대포장보다 훨씬 높게 나타나는 반면 곰팡이 발생에 의한 부패는 대포장보다 낮게 나타났다. 수삼 저장온도에 따라 유통 중 품질이 크게 달라져 온도 -2℃ 이하에 저장한 수삼은 유통 중 손실률이 높고 특품의 비율이 낮아지는 등 품질이 저하되며 저장기간이 길수록 더욱 심화되는 반면 0℃ 저장 수삼은 저장 3개월 후에도 유통 중 품질의 변화가 적었다. 이러한 결과를 종합적으로 정리하여 인삼의 전통적인 수확후 관리 방법이 아니라 수출용 인삼의 품질 향상을 위해 개선된 수확후 관리 방법을 적용할 수 있도록 흐름도로 정리하였다.

  • PDF