• 제목/요약/키워드: Post-synthesis

검색결과 277건 처리시간 0.025초

AGES OF ELLIPTICAL GALAXIES FROM POPULATION SYNTHESIS MODELS

  • LEE YOUNG-WOOK;PARK JANG-HYUN
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.49-51
    • /
    • 1996
  • New population synthesis models, with the effects of metallicity spread and the horizontal-branch (HB) morphology, provide a way to break the well-known age-metallicity degeneracy in the analysis of the integrated light of elliptical galaxies. Our models suggest that the far- UV radiation of these systems is dominated by a minority population of metal-poor, hot HB stars and their post-HB progeny, while the optical radiation is dominated by a metal-rich population. The systematic variation of UV upturn depends on the contribution from metal-poor, hot HB stars and their post-HB progeny, which in turn depends on the ages of old stellar populations in galaxies. Our result implies a prolonged epoch of galaxy formation, in the sense that more massive galaxies (in denser environments) formed first. Our models also suggest that the strenghth of H$\beta$ index is strongly affected by HB stars, and hence previous age estimation without detailed modeling of the HB would underestimate the ages of ellipticals by $\~$7 Gyr.

  • PDF

Failure of Ammonia Synthesis Converter Due to Hydrogen Attack and Its On-Stream Assessment Using ToFD Method

  • Albiruni, Farabirazy;Lee, Joon-Hyun
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.132-137
    • /
    • 2008
  • A failure analysis of ammonia converter which suffered hydrogen attack in two years since its initial operating time was presented. It is constructed from 2.25 Cr.1 Mo steel. Analysis showed that the failure on closing seam weld joint was due to local improper post weld heat treatment (PWHT). Improper PWHT can introduce high residual stresses in thick-walled pressure vessel. High residual stress level in weld joint is very prone to hydrogen attack for any components which are operating in hydrogen gas environment. The repair procedures based on the principle to decrease the residual stress then proposed. The repair was controlled very carefully by applying several nondestructive tests in the each stage of repair. To assure the successful of the proposed repair, after one year since repair time, high temperature ultrasonic and TOFD methods were applied on-stream to this equipment in order to evaluate its post repair condition. The two methods showed good results on the repaired area.

  • PDF

인 몰립덴산을 촉매로 이용한 효과적이고 간단한 퀸옥살린의 One-Pot합성 (Phosphomolybdic Acid-Catalyzed Highly Efficient and Simple One-Pot Synthesis of Quinoxaline)

  • Chaskar, Atul;Padalkar, Vikas;Phatangare, Kiran;Langi, Bhushan;Naik, Pallavi
    • 대한화학회지
    • /
    • 제53권6호
    • /
    • pp.727-730
    • /
    • 2009
  • 촉매로서 인 몰립덴산을 이용하여 일련의 퀸옥살린의 유도체를 높은 수율로 합성하였다. 이 방법의 장점은 실내 온도에서 간단한 조작, HPA 촉매의 재사용, 반응단계의 친환경적인 면이다.

Spray pyrolysis synthesis of mesoporous TiO2 microspheres and their post modification for improved photocatalytic activity

  • Choi, Jaehyung;Yoo, Kye Sang;Kim, Jinsoo
    • Korean Journal of Chemical Engineering
    • /
    • 제35권12호
    • /
    • pp.2480-2486
    • /
    • 2018
  • Mesoporous $TiO_2$ microspheres were prepared by spray pyrolysis for photocatalysis. Post modification of $TiO_2$ by heat treatment was performed to optimize its photocatalytic performance. First, spherical $TiO_2$ particles with mesoporous structure were synthesized at pyrolysis temperatures of 500, 600, and $700^{\circ}C$. After characterization by XRD, SEM, and $N_2$ adsorption, a sample prepared at $500^{\circ}C$ was found to possess desirable properties for photocatalytic performance through post-modification. In methylene blue degradation, mesoporous $TiO_2$ microspheres synthesized at $500^{\circ}C$ outperformed other microspheres. Furthermore, samples obtained by spray pyrolysis at $500^{\circ}C$ were calcined at various temperatures as a post-modification process. The sample calcined at $350^{\circ}C$ showed improved photocatalytic activity due to optimal anatase crystallinity and surface area.

Recyclable single-stranded DNA template for synthesis of siRNAs

  • Ali, Mussa M.;Obregon, Demian;Agrawal, Krishna C.;Mansour, Mahmoud;Abdel-Mageed, Asim B.
    • BMB Reports
    • /
    • 제43권11호
    • /
    • pp.732-737
    • /
    • 2010
  • RNA interference is a post-transcriptional silencing mechanism triggered by the bioavailability and/or exogenous introduction of double-stranded RNA (dsRNA) into cells. Here we describe a novel method for the synthesis of siRNA in a single vessel. The method employs in vitro transcription and a single-stranded DNA (ssDNA) template and design, which incorporates upon self-annealing, two promoters, two templates, and three loop regions. Using this method of synthesis we generated efficacious siRNAs designed to silence both exogenous and endogenous genes in mammalian cells. Due to its unique design the single-stranded template is easily amenable to adaptation for attachment to surface platforms for synthesis of siRNAs. A siRNA synthesis platform was generated using a 3' end-biotinylated ssDNA template tethered to a streptavidin coated surface that generates stable siRNAs under multiple cycles of production. Together these data demonstrate a unique and robust method for scalable siRNA synthesis with potential application in RNAi-based array systems.

Soft Solution Processing : Low-Energy Direct Fabrication of Advanced Inorganic Materials

  • Masahiro Yoshimura;한규승;Wojciech Suchanek
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권8호
    • /
    • pp.875-878
    • /
    • 1999
  • A new concept ??soft solution processing?? has been introduced to fabricate advanced solid state materials in an economical, environmentally friendly, and energy and material efficient way. The prepared films show the desired and prospective properties despite of low temperature synthesis and no post-synthesis annealing. Successful examples demonstrate that soft solution processing is capable of preparing advanced materials with planned properties through the easy control of reaction conditions in a suitable aqueous solution in a single synthetic step without huge energy consumption and without any sophisticated equipment.

환경성 유해요인이 유전물질과 세포활성에 미치는 영향 III. 포유동물세포에서 돌연변이원에 의한 DNA 상해의 회복에 미치는 DNA 중합효소저해제의 영향 (Enviromental Toxic Agents on Genetic Material and Cellular Activity III. DNA Polymerase Inhibitors on Repair of Mutagen-Induced DNA Damage in Mammalian Cells)

  • 엄경일;선우양일;이천복;신은주
    • 한국환경성돌연변이발암원학회지
    • /
    • 제8권1호
    • /
    • pp.1-12
    • /
    • 1988
  • 본 연구는 Ethyl methanesulfonato(EMS) 혹은 Bleomycin(BLM)에 의해 유발된 DNA상해의 회복에 미치는 DNA 종합효소 $\alpha$ 저해제인 Aphidicolin(APC)과 DNA 종합효소 $\beta$의 저해제인 2`, 3`-dideoxythymididine 5`-triphosphate(ddTTP)의 영향을 조사하기 위하여 Chinese hamster ovary(CHO)-Kl 세포를 재료로 비주기성 DNA 합성법과 알칼리유출법 및 스칼리 자당구배침강법으로 수행하여 얻은 결과는 다음과 같다. APC와 ddTTP는 EMS에 의해 유발된 DNA 상해의 회복을 저해하여 APC 혹은 ddTTP를 처리하지 않고 배양한 실험군 보다 비주기성 DNA 합성율과 DNA 단사 절단율이 증가되었다. 한편 BLM에 의해 유발된 DNA 상해의 회복에서는 ddTTP를 처리했을 경우에만 저해되었다. 즉 BLM 처리 후 ddTTP를 후처리한 실험군의 비주기성 DNA 합성율과 DNA단사 절단율은 ddTTP를 처리하지 않은 군보다 증가되었고, BLM 처리 후 APC를 후처리할 경우에 비주기성 DNA 합성율과 DNA 단사 절단율은 APC를 처리하지 않은 군과 유사하였다. 이상의 결과들에서 EMS에 의해 유발된 DNA 상해의 회복에는 DNA 중합효소 $\alpha$, $\beta$양자가 관여하나 BLM에 의해 유발된 DNA 상해의 회복에는 중합효소 $\beta$가 관여하는 것으로 추측된다.

  • PDF

환경성 유해요인이 유전물질과 세포활성에 미치는 영향 V. CHO세포에서 세포주기에 따라 돌연변이원에 의해 유발된 DNA회복합성에 미치는 DNA중합효소의 역할 (Environmental Toxic Agents on Genetic Material and Cellular Ativity V. The Roles of DNA Polymerases on Mutagen-Induced DNA Repair Synthesis in Relation to Cell Cycle in Chinese Hamster Ovary Cells)

  • 엄경일;김춘광;신은주;문용석;이천복
    • 한국환경성돌연변이발암원학회지
    • /
    • 제9권1호
    • /
    • pp.23-32
    • /
    • 1989
  • Chinese hamster ovary (CHO)-K1 cells echibited a differential sensitivity in the process of DNA repair synthesis induced by ethyl methanesulfonate (EMS) or bleomycin (BLM) in relation to cell cycle. Two assays were employed in this study: alkaline elution and unscheduled DNA synthesis. The post-treat-ment with aphidicolin (APC), an inhibitor of DNA polymerase alpha, inhibited DNA repair synthesis induced by EMS in G2 phase, while APC did not show any effect on BLM-induced DNA repair synthesis in all phases. On the other hands, the 2', 3'-dideoxythymidine (ddTTP), an inhibitor of DNA polymerase beta, inhibited DNA repair synthesis induced by EMS or BLM in both of G1 and G2 phases. These results suggested that the involvement of DNA polymerase alpha and beta in DNA repair was dependent on cell stage or used chemical agent.

  • PDF

Effects of Synchronizing the Rate of Dietary Energy and Nitrogen Release on Ruminal Fermentation, Microbial Protein Synthesis, Blood Urea Nitrogen and Nutrient Digestibility in Beef Cattle

  • Chumpawadee, Songsak;Sommart, K.;Vongpralub, T.;Pattarajinda, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권2호
    • /
    • pp.181-188
    • /
    • 2006
  • The objective of this research was to determine the effects of synchronizing the rate of dietary energy and nitrogen release on: ruminal fermentation, microbial protein synthesis, blood urea nitrogen, and nutrient digestibility in beef cattle. Four, two-and-a-half year old Brahman-Thai native crossbred steers were selected for the project. Each steer was fitted with a rumen cannula and proximal duodenal cannula. The steers were then randomly assigned in a $4{\times}4$ Latin square design to receive four dietary treatments. Prior to formulation of the dietary treatments, feed ingredients were analyzed for chemical composition and a nylon bag technique was used to analyze the treatments various ingredients for degradability. The treatments were organized in four levels of a synchrony index (0.39, 0.50, 0.62 and 0.74). The results showed that dry matter digestibility trend to be increased (p<0.06), organic matter and acid detergent fiber digestibility increased linearly (p<0.05), while crude protein and neutral detergent fiber digestibility were not significantly different (p>0.05). Higher concentration and fluctuation of ruminal ammonia and blood urea were observed in the animal that received the lower synchrony index diets. As the levels of the synchrony index increased, the concentrations of ruminal ammonia nitrogen and blood urea nitrogen, at the 4 h post feeding, decreased linearly (p<0.05). Total volatile fatty acid and bacteria populations at the 4 h post feeding increased linearly (p<0.05). Microbial protein synthesis trend to be increase (p<0.08). The results of this research indicate that synchronizing the rate of degradation of dietary energy and nitrogen release improves ruminal fermentation, microbial protein synthesis and feed utilization.

Post Annealing Effects on Iron Oxide Nanoparticles Synthesized by Novel Hydrothermal Process

  • Kim, Ki-Chul;Kim, Young-Sung
    • Journal of Magnetics
    • /
    • 제15권4호
    • /
    • pp.179-184
    • /
    • 2010
  • We have investigated the effects of post annealing on iron oxide nanoparticles synthesized by the novel hydrothermal synthesis method with the $FeSO_4{\cdot}7H_2O$. To investigate the post annealing effect, the as-synthesized iron oxide nanoparticles were annealed at different temperatures in a vacuum chamber. The morphological, structural and magnetic properties of the iron oxide nanoparticles were investigated with high resolution X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Mossbauer spectroscopy, and vibrating sample magnetometer analysis. According to the XRD and HRTEM analysis results, as-synthesized iron oxide nanoparticles were only magnetite ($Fe_3O_4$) phase with face-centered cubic structure but post annealed iron oxide nanoparticles at $700^{\circ}C$ were mainly magnetite phase with trivial maghemite ($\gamma-Fe_2O_3$) phase which was induced in the post annealing treatment. The crystallinity of the iron oxide nanoparticles is enhanced by the post annealing treatment. The particle size of the as-synthesized iron oxide nanoparticles was about 5 nm and the particle shape was almost spherical. But the particle size of the post annealed iron oxide nanoparticles at $700^{\circ}C$ was around 25 nm and the particle shape was spherical and irregular. The as-synthesized iron oxide nanoparticles showed superparamagnetic behavior, but post annealed iron oxide nanoparticles at $700^{\circ}C$ did not show superparamagnetic behavior due to the increase of particle size by post annealing treatment. The saturation of magnetization of the as-synthesized nanoparticles, post annealed nanoparticles at $500^{\circ}C$, and post annealed nanoparticles at $700^{\circ}C$ was found to be 3.7 emu/g, 6.1 emu/g, and 7.5 emu/g, respectively. The much smaller saturation magnetization value than one of bulk magnetite can be attributed to spin disorder and/or spin canting, spin pinning at the nanoparticle surface.