• Title/Summary/Keyword: Post-sintering

Search Result 74, Processing Time 0.024 seconds

Comparison of Resonance Characteristics in FBAR Devices by Thermal Treatments

  • Mai Linh;Song Hae-il;Yoon Giwan
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.3
    • /
    • pp.137-141
    • /
    • 2005
  • The paper presents some methods to improve characteristics of film bulk acoustic resonator (FBAR) devices. The FBAR devices were fabricated on Bragg reflectors. Thermal treatments were done by sintering and/or annealing processes. The measurement showed a considerable improvement of return loss $(S_{11})$ and quality factor $(Q_{s/p}).$ These thermal treatment techniques seem very promising for enhancing FBAR resonance performance.

Dimensional Precision in Sinter-hardening PM Steels

  • Lindsley, Bruce;Murphy, Thomas
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.407-408
    • /
    • 2006
  • Dimensional precision is a critical parameter in net shape processing of ferrous PM components. Sinter-hardening alloys undergo a transformation from austenite to martensite. Martensite formation expands the sintered compact, while tempering hardened steels results in shrinkage. In addition, martensitic regions with high Cu and C contents may contain large amounts of retained austenite. The presence of martensite and retained austenite, in addition to the tempering step, all play a role in the final dimensions of a component. This paper investigates the dimensional and microstructural changes to two sinter-hardening grades through different post-sintering thermal treatments.

  • PDF

Fabrication and Characterization of the Ti-TCP Composite Biomaterials by Spark Plasma Sintering

  • Mondal, Dibakar;Park, Hyun-Kuk;Oh, Ik-Hyun;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • Ti metal has superior mechanical properties along with biocompatibility, but it still has the problem of bio-inertness thus forming weaker bond in bone/implant interface and long term clinical performance as orthopaedic and dental devices are restricted for stress shielding effect. On the other hand, despite the excellent biodegradable behavior as being an integral constituent of the natural bone, the mechanical properties of ${\beta}$-tricalcium phosphate $(Ca_3(PO_4)_2;\;{\beta}-TCP)$ ceramics are not reliable enough for post operative load bearing application in human hard tissue defect site. One reasonable approach would be to mediate the features of the two by making a composite. In this study, ${\beta}$-TCP/Ti ceramic-metal composites were fabricated by spark plasma sintering in inert atmosphere to inhibit the formation of $TiO_2$. Composites of 30 vol%, 50 vol% and 70 vol% ${\beta}$-TCP with Ti were fabricated. Detailed microstructural and phase characteristics were investigated by FE-SEM, EDS and XRD. Material properties like relative density, hardness, compressive strength, elastic modulus etc. were characterized. Cell viability and biocompatibility were investigated using the MTT assay and by examining cell proliferation behavior.

  • PDF

Improvement of the Magnetic Properties of (Nd, Dy)-Fe-B Sintered Magnets by Modification of HD and Annealing Processes (HD 처리 및 열처리공정 개선에 의한 (Nd, Dy)-Fe-B 소결자석의 자기특성 향상)

  • NamKung, S.;Lee, Y.H.;Kim, M.K.;Jang, T.S.
    • Journal of Powder Materials
    • /
    • v.17 no.5
    • /
    • pp.359-364
    • /
    • 2010
  • In an attempt to optimize the magnetic properties of (Nd, Dy)-Fe-B sintered magnets, hydrogenation and post-sintering heat treatment processes were investigated at various hydrogenation temperatures and heat treatment temperatures. The coercivity of (Nd, Dy)-Fe-B sintered magnets hydrogenated at $400^{\circ}C$ increased to about 1.2 kOe without any detrimental effect on the remanence. Moreover, the coercivity of the magnets was enhanced further by a consecutive $2^{nd}$ and $3^{rd}$ step heat treatment. These results eventually leaded to the reduction of the Dy content in a high coercive (> 30 kOe) (Nd, Dy)-Fe-B sintered magnets, as much as 10%.

A study on the sintered monolithic component of piston and rebound for automobile shock absorber (자동차 쇼크 업 소버용 피스톤과 리바운드 1체형 소결부품 제작에 관한 연구)

  • 임태환;장태석;엄호성
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.1
    • /
    • pp.65-68
    • /
    • 2004
  • When a monolithic component of piston and rebound is produced by sintering process, some technical problems such as clogging of holes during post-machining, dimensional change around the holes, and cracking of the component edges due to concentration of mechanical stress during machining are frequently encountered. To solve these problems, we systematically evaluated and investigated the density of green compacts and sintered parts, the microstructural change around the holes, and the attenuation and durability of the sintered parts in this study. By doing so, it was able to solve above problems.

  • PDF

Photoelectronic Properties of CdTe Films Sintered with $CdCl_2$ and $CuCl_2$ ($CdCl_2$$CuCl_2$ 양에 따른 CdTe 소결막의 광전기적 성질)

  • Im, Ho-Bin;Sohn, Dong-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.257-259
    • /
    • 1987
  • The photoelectronic properties of CdTe films sintered with various amounts of $CdCl_2$ and $CuCl_2$ have been investigated by measurements of dark electrical resistivity, photocurrent, thermoelectric power, optical transmission and by observation of microstructure. The grain size and optical transmission of sintered CdTe films increase with increasing amount of $CdCl_2$ indicating that $CdCl_2$ acts as a sintering aid. The photoconductivity gain(A-$cm^2/W$) increases and resistivity($\Omega$-cm) decreases with increasing amount of $CuCl_2$ up to 100ppm due to the occurance of Cu-doping during sintering. The dark resistivity could be reduced farther by post heat treatments. The dark resistivity was still high($10^3{\Omega}$-cm) so that the accurate determination of the hole concentration by Hall measurement or by thermoelectric power measurement was not possible. From the analysis of electrical activation energy, however it can be concluded that the hole concentration is less than $10^{14}/cm^3$ and all grains are depleted of carrier by the trapping centers at grain boundaries.

  • PDF

Green Machining of the Warm Compacted Sinter Hardenable Material

  • Cheng, Chao-Hsu;Chiu, Ken;Guo, Ray
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.295-296
    • /
    • 2006
  • High hardness of P/M parts can be obtained in the cooling section of the sintering furnace by using sinter hardenable materials, thus the post-sintering heat treatment can be eliminated. However, the sinter hardened materials would have difficulties in secondary machining if it is required, which will limit the applications of sinter hardenable materials in the machined parts. Recent development in warm compaction technology can enable us not only to achieve the high green density up to $7.4\;g/cm^3$, but also the high green strength which is needed for green machining. Therefore by using warm compaction technology, the green machining can be applied to sinter hardenable materials for the high density, strength and hardness P/M parts. In the present study, a pre-alloyed steel powder, ATOMET4601, was used by mixing with 2.0% copper, 1.0% nickel, 0.9% graphite and a proprietary lubricant using a binder treatment process - FLOMET. The specimens were compacted and green machined with different machining parameters. The machined surface finish and part integrity were evaluated in selecting the optimal conditions for green machining. The possibility of applying the green machining to the high-density structural parts was explored.

  • PDF

Surface Characteristics of Ground and Post-Sintered Zirconia (지르코니아의 소결 후 특성)

  • Kim, Min-Jeong;Kim, Im-Sun;Choi, Byung-Hwan;Kim, Won-Gi
    • Journal of Technologic Dentistry
    • /
    • v.38 no.3
    • /
    • pp.157-163
    • /
    • 2016
  • Purpose: It is to compare and evaluate the change of the wear rate and phase variation of the Zirconia before and after the sintering after the grinding by a high speed equipment manufactured for the Zirconia. Methods: The specimen of the sintered Zirconia was manufactured as size of $15mm{\times}15mm{\times}2mm$. The grinding has been applied to each of all pieces of each test groups for a minute fit for each condition at same speed of 50,000 rpm by a diamond bur at high speed handpiece with injection of the air and water. For the observation of the surface before and after the sintering of the each test piece, the cross section of it was observed as 100 magnification by a scanning electron microscope after it was coated by PT, and the diffraction analysis was performed by XDR to compare the crystal phase of the Zirconia. The average surface roughness value of all specimens were evaluated. The wear test was performed at room temperature by applying a load of 1kg for 120,000 cycles for the chewing period 6 months. Wear was analyzed for the enamel cusps by measurement of the vertical substance loss with a laser scanner. Conclusion: The phase variation from the tetragonal phase to the monoclinic phase was confirmed in the test group of the pre-sintered Zirconia after the grinding, and the value of the surface roughness and the wear rate was increased in experimental group.

Fused Deposition Modeling of Iron-alloy using Carrier Composition

  • Harshada R. Chothe;Jin Hwan Lim;Jung Gi Kim;Taekyung Lee;Taehyun Nam;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.44-56
    • /
    • 2023
  • Additive manufacturing (AM) or three-dimensional (3D) printing of metals has been drawing significant attention due to its reliability, usefulness, and low cost with rapid prototyping. Among the various AM technologies, fused deposition modeling (FDM) or fused filament fabrication is receiving much interest because of its simple manufacturing processing, low material waste, and cost-effective equipment. FDM technology uses metal-filled polymer filaments for 3D printing, followed by debinding and sintering to fabricate complex metal parts. An efficient binder is essential for producing polymer filaments and the thermal post-processing of printed objects. This study involved an in-depth investigation of and a fabrication route for a novel multi-component binder system with steel alloy powder (45 vol.%) ranging from filament fabrication and 3D printing to debinding and sintering. The binder system consisted of polyvinyl pyrrolidone (PVP) as a binder and thermoplastic polyurethane (TPU) and polylactic acid (PLA) as a carrier. The PVP binder held the metal components tightly by maintaining their stoichiometry, and the TPU and PLA in the ratio of 9:1 provided flexibility, stiffness, and strength to the filament for 3D printing. The efficacy of the binder system was examined by fabricating 3D-printed cubic structures. The results revealed that the thermal debinding and sintering processes effectively removed the binder/carrier from the cubic structures, resulting in isotropic shrinkage of approximately 15.8% in all directions. The scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) patterns displayed the microstructure behavior, phase transition, and elemental composition of the 3D cubic structure.

Metallic FDM Process to Fabricate a Metallic Structure for a Small IoT Device (소형 IoT 용 금속 기구물 제작을 위한 금속 FDM 공정 연구)

  • Kang, In-Koo;Lee, Sun-Ho;Lee, Dong-Jin;Kim, Kun-Woo;Ahn, Il-Hyuk
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.21-26
    • /
    • 2020
  • An autonomous driving system is based on the deep learning system built by big data which are obtained by various IoT sensors. The miniaturization and high performance of the IoT sensors are needed for diverse devices including the autonomous driving system. Specially, the miniaturization of the sensors leads to compel the miniaturization of the fixer structures. In the viewpoint of the miniaturization, metallic structure is a best solution to attach the small IoT sensors to the main body. However, it is hard to manufacture the small metallic structure with a conventional machining process or manufacturing cost greatly increases. As one of solutions for the problems, in this work, metallic FDM (Fused depositon modeling) based on metallic filament was proposed and the FDM process was investigated to fabricate the small metallic structure. Final part was obtained by the post-process that consists of debinding and sintering. In this work, the relationship between infill rate and the density of the part after the post-process was investigated. The investigation of the relationship is based on the fact that the infill rate and the density obtained from the post-processing is not same. It can be said that this work is a fundamental research to obtain the higher density of the printed part.