• Title/Summary/Keyword: Post-disaster Refugees Housing

Search Result 5, Processing Time 0.017 seconds

Evaluation of Lateral Load Resistance and Heating/Cooling/Lighting Energy Performance of a Post-disaster Refugees Housing Using Lightweight composite Panels (경량 복합패널을 활용한 구호주거의 횡하중 저항성능 및 냉난방조명 에너지성능 평가)

  • Hwang, Moon-Young;Lee, Byung-Yun;Kang, Su-Min;Kim, Sung-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.252-262
    • /
    • 2019
  • Following the earthquake in Gyeongju (2016) and Pohang (2017), South Korea is no longer a safe place for earthquakes. Accordingly, the need for shelters suitable for disaster environments is increasing. In this study, a lightweight composite panel was used to produce post-disaster housing for refugees to compensate for the disadvantages of existing evacuation facilities. For this purpose, an evaluation of structural performance and thermal environment for post-disaster housing for refugees composed of lightweight composite panels was performed. To assess the structural performance, a lateral loading test was conducted on a system made of lightweight composite panels. The specimens consisted of two types, which differed according to the bonding method, as a variable. In addition, the seismic and wind loads were calculated in accordance with KBC 2016 and compared with the experimental results. Regarding the energy performance, optimization of south-facing window planning and window-wall ratio and solar heat gain coefficient were analyzed to minimize heating, cooling, and lighting energy. As a result, the specimens composed of lightweight composite panels will perform sufficiently safely for lateral loads and the optimized window planning will lead to a low-energy operation.

A Basic Study of Development of Post-disaster Refugees Housing Performance Index (재난대응 구호주거 성능지표 개발을 위한 기초연구)

  • Nam, Hye-Ryeong;Lee, Won-Hak;Kang, Su-Min;Kim, Sung-Tae;Cho, Young-Jun;Lee, Byung-Yun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.744-754
    • /
    • 2017
  • In this study, an analytic hierarchy process (AHP) was conducted with the aim of developing a post-disaster refugee housing performance index system (PPS) to improve the post-disaster refugee housing (PRH) performance criteria for the foundation of quality-based development. The PRH was defined as a mid-term temporary housing facility that is used for a certain period before the permanent housing is established. The safety, rapidity, reusability, habitability, and economy were derived from major performance factors through prior research. A hierarchical PPS was organized by linking the major performance factors with the whole life cycle process of PRH. The priority of each performance index of PPS was determined quantitatively using the analytic hierarchy process through an expert survey. Based on AHP analysis, the performance criterion of the total weight 1-10 ranking and the performance criterion of the first rank in each category were classified into the essential performance criterion (must be achieved) and the others were classified into the recommended performance criterion (optional achieved) and the performance index was constructed considering all stages of PRH development. With the completion of the PRH performance index, it is expected that victims will be able to secure stable residence and return to their daily lives quickly.

Modular Building for Urban Disaster Housing: Case Study of Urban Post-Disaster Housing Prototype in New York

  • Ford, George;Ahn, Yong Han;Choi, Don Mook
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.82-89
    • /
    • 2014
  • Disasters that destroy homes and infrastructure and cause significant financial damage are becoming more common as population centers grow. In addition, several natural disasters have resulted in a major loss of life and created countless refugees due to damage to housing. After major catastrophic disasters, it is very important that the government agencies respond to post-disaster housing issues and provide resources such as temporary housing before the full rehabilitation and reconstruction of destroyed and damaged housing. To provide affordable temporary housing for residents who may lose their homes as the result of a catastrophic disaster including storms, government agencies must develop a post-disaster housing prototype. In general, government agencies should explore several different forms of factory-built single-story, single family housing, such as modular homes, panelized homes, and precut homes. In urban cities including New York and Seoul, it is very important to provide housing which supports the demand for higher-density living spaces than single-family homes or trailers typically available due to the high population density and the desire to resettle as many residents as possible in their former neighborhoods. This study identified the urban post-disaster housing prototypes that may provide higher density housing with high quality living spaces, high air quality, and energy efficiency as well as rapid deployment. A case study of "Urban Post-Disaster Housing Prototype Program in New York" was conducted through a detailed interview process with a designer, engineer, contractor, the Office of Emergency Management (OEM) in New York, the U.S. Army Corps of Engineers (USACE), and temporary occupants. An appropriate disaster housing program that can provide living spaces for victims of disasters that keeps residents in their community and allows them to live and work in their neighborhoods was developed.

Evaluation on Transverse Load Performance of Lightweight Composite Panels (경량 복합패널의 분포압 강도 성능 평가)

  • Kang, Su-Min;Hwang, Moon-Young;Kim, Sung-Tae;Cho, Young-Jun;Lee, Byung-yun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.146-157
    • /
    • 2018
  • Over the last 10 years, the number of disasters has been increasing in Korea. As a result, the need for temporary residences or shelters for disaster conditions is increasing. In this study, post-disaster refugees housing was developed using lightweight composite panels that are lighter than the materials that make up the existing shelter. To accomplish this, the structural performance of the lightweight composite panel was validated. Among the performance tests on the panels, the transverse load test was conducted according to the ASTM E 72 criteria. As a result of the experiment, when each specimen was subjected to a uniformly distributed load, the allowable load was determined according to the span. All the experiments were ended due to a loss of adhesive at the junction of the skin and core. Further analysis was conducted to calculate the shear stress when the junction was dropped. The mean shear stress at the adhesive surface of a specimen, 150 mm and 200 mm in thickness, was 0.0170MPa and 0.0156MPa, respectively. This suggests that similar values were obtained from panels of equal thickness. In addition, this stress provides a criterion of judgment that could be used to inspect the structural performance of the panels. The performance of the panel was evaluated based on the allowable load, but it may be possible to increase the strength of the lightweight composite panel by improving the joining method to avoid separation from the junction.

Evaluation on In-plane Shear Strength of Lightweight Composite Panels (경량 복합패널의 면내 전단 성능 평가)

  • Hwang, Moon-Young;Kang, Su-Min;Lee, Byung-yun;Kim, Sung-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.9-20
    • /
    • 2019
  • The number of natural disasters in Korea, such as earthquakes, is increasing. As a result, there is growing need for temporary residences or shelters for disaster conditions. The aim of this study was to produce post-disaster refugees housing differentiated from existing shelters using lightweight composite panels. To accomplish this, the structural performance of lightweight composite panels was validated, and an in-plane shear strength test was conducted according to the ASTM E72 criteria among the performance test methods for panels. As a result of the experiment, the maximum load for each specimen under an in-plane shear load was determined. All the experiments ended with the tear of the panel's skin section. The initial stiffness of the specimens was consistent with that predicted by the calculations. On the other hand, local crushing and tearing, as well as the characteristics of the panel, resulted in a decrease in stiffness and final failure. Specimens with an opening showed a difference in stiffness and strength from the basic experiment. The maximum load and the effective area were found to be proportional. Through this process, the allowable shear stress of the specimens was calculated and the average allowable shear stress was determined. The average ultimate shear stress of the lightweight composite panels was found to be $0.047N/mm^2$, which provides a criterion of judgement that could be used to expect the allowable load of lightweight composite panels.