• Title/Summary/Keyword: Post tensioned

Search Result 197, Processing Time 0.025 seconds

Modelling of bonded and unbonded post-tensioned concrete flat slabs under flexural and thermal loading

  • Mohammed, Abbas H.;Taysi, Nildem
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.595-606
    • /
    • 2017
  • During their life span, post-tensioned concrete structures may be exposed to thermal loads. Therefore, there has been a growing interest in research on the advanced analysis and design of post-tensioned concrete slabs subjected to thermal loads. This paper investigates the structural behaviour of post-tensioned one-way spanning concrete slabs. A nonlinear finite element model for the analysis of post- tensioned unbonded and bonded concrete slabs at elevated temperatures was developed. The interface between the tendon and surrounding concrete was also modelled, allowing the tendon to retain its profile shape during the deformation of the slab. The load-deflection behaviour, load-force behaviour in the tendon, and the failure modes are presented. The numerical analysis was conducted by the finite element ANSYS software and was carried out on two different one-way concrete slabs chosen from literature. A parametric study was conducted to investigate the effect of several selected parameters on the overall behavior of post-tensioned one-way concrete slab. These parameters include the effect of tendon bonding, the effect of thermal loading and the effect of tendon profile. Comparison between uniform thermal loading and nonuniform thermal loading showed that restrained post tensioned slab with bottom surface hotter has smaller failure load capacity.

Studies on post-tensioned and shaped space-truss domes

  • Schmidt, Lewis C.;Li, Hewen
    • Structural Engineering and Mechanics
    • /
    • v.6 no.6
    • /
    • pp.693-710
    • /
    • 1998
  • This paper concerns studies on the shape formation of post-tensioned and shaped steel domes. The post-tensioned and shaped steel domes, assembled initially at ground level in an essentially flat condition, are shaped to a curved space form and erected into the final position by means of a post-tensioning technique. Based on previous studies on this shape formation principle, three post-tensioned and shaped steel domes have been constructed. The results of the shape formation tests and finite element analyses are reported in this paper. It is found that the first two test domes did not furnish a part-spherical shape as predicted by finite element analyses, because the movements of some mechanisms were not controlled sufficiently. With a revised post-tensioning method, the third dome obtained the theoretical prediction. The test results of the three post-tensioned and shaped domes have shown that a necessary condition to form a desired space shape from a planar layout with low joint stiffnesses is that the movements of all the existing mechanisms must be effectively controlled as indicated by the finite element analysis. The extent of the maximum elastic deformation of a post-tensioned and shaped steel structure is determined by the strength of the top chords and their joints. However, due to the semi-rigid characteristic of the top chord joints, the finite element analyses cannot give a close prediction for the maximum elastic deformations of the post-tensioned and shaped steel domes. The results of the current studies can be helpful for the design and construction of this type of structure.

Flexural behavior of post-tensioned precast concrete girder at negative moment region

  • Choi, Seung-Ho;Heo, Inwook;Kim, Jae Hyun;Jeong, Hoseong;Lee, Jae-Yeon;Kim, Kang Su
    • Computers and Concrete
    • /
    • v.30 no.1
    • /
    • pp.75-83
    • /
    • 2022
  • This study introduced a post-tensioned precast concrete system that was developed and designed to improve the performance of joints by post-tensioning. Full-scaled specimens were tested to investigate flexural performances at the negative moment region, where the test variables were the presence of slabs, tendon types, and post-tensioned lengths. A specimen with slabs exhibited significantly higher stiffness and strength values than a specimen without slabs. Thus, it would be reasonable to consider the effects of a slab on the flexural strength for an economical design. A specimen with unbonded mono-tendons had slightly lower initial stiffness and flexural strength values than a specimen with bonded multi-tendons but showed greater flexural strength than the value specified in the design codes. The post-tensioned length was found to have no significant impact on the flexural behavior of the proposed post-tensioned precast concrete system. In addition, a finite element analysis was conducted on the proposed post-tensioned precast concrete system, and the tests and analysis results were compared in detail.

Stress of External Steel Rod in Post-Tensioned Concrete Beam (포스트텐션 콘크리트 보에서 비부착 외부강봉의 응력)

  • Lee, Swoo-Heon;Kang, Thomas H.K.;Shin, Kyung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.47-55
    • /
    • 2015
  • This paper shows the simplified equation to predict the ultimate moment capacity and corresponding rod stress in reinforced concrete beam with external post-tensioning rods. Because the stress of external post-tensioning rod depends on the beam deflection, the previous analytical model for post-tensioned beams requires a tedious iteration process. Also, the stress equations in ACI code or other researchers' models are suitable only for internal tendons in concrete beams. In this study, given the lack of analytical approaches to predict the nominal stress of the external unbonded rod, a simple and robust equation has been proposed for externally post-tensioned concrete beams. It is concluded that the proposed equation predicted the stress of external steel rods in post-tensioned concrete beams reasonably well.

Modeling of post-tensioned one-way and two-way slabs with unbonded tendons

  • Kim, Uksun;Huang, Yu;Chakrabarti, Pinaki R.;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • v.13 no.5
    • /
    • pp.587-601
    • /
    • 2014
  • A sophisticated finite element modeling approach is proposed to simulate unbonded post-tensioned concrete slabs. Particularly, finite element contact formulation was employed to simulate the sliding behavior of unbonded tendons. The contact formulation along with other discretizing schemes was selected to assemble the post-tensioned concrete system. Three previously tested unbonded post-tensioned two-way and one-way slabs with different reinforcement configurations and boundary conditions were modeled. Numerical results were compared against experimental data in terms of global pressure-deflection relationship, stiffness degradation, cracking pattern, and stress variation in unbonded tendons. All comparisons indicate a very good agreement between the simulations and experiments. The exercise of model validation showcased the robustness and reliability of the proposed modeling approach applied to numerical simulation of post-tensioned concrete slabs.

Seismic Performance Improvement of Concrete Gravity Dam by Post-tensioned Anchors (앵커공법을 적용한 기존 콘크리트 중력식 댐의 내진성능 보강방안)

  • Kim, Yongon;Kim, Se-Il;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.49-53
    • /
    • 2013
  • This paper describes the assessment of seismic performance of the concrete gravity dam seismically reinforced by post-tensioned anchors. In order to evaluate the seismic performance, the response spectrum analyses have been carried out for 7 different configurations of the post-tensioned anchors, and then their performance improvement in the maximum tensile and compressive stresses is compared to each other. The comparative results demonstrate that the layout of the post-tensioned anchors strongly influences the seismic performance of the concrete gravity dam. In this study, the slightly-inclined vertical anchorage system shows the largest improvement on the overall performance of the seismically-excited concrete gravity dam.

Damage Assessment of a Post-Tensioned Segmental Concrete Bridge Using Modal Testing Data (모달시험을 통한 Post-Tensioned Segmental 콘크리트 교량의 손상평가)

  • Heo, Gwanghee;Choi, Man-Yong;Wang, M.L.
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.205-214
    • /
    • 1999
  • 구조물의 동특성(고유진동수, 감쇠, 모드형상 등)의 변화는 구조물의 안전도를 평가할 수 있는 한 방법이다. 본 연구에서 콘크리트 세그먼트의 웨브 부분에 상당히 많은 균열이 진전되고 있는 상태의 Post-Tensioned Segmental 콘크리트 교량의 안전도 평가를 시도하였다. 안전도 평가를 위한 근간 데이터로 1986년 측정했던 데이터와 2차원 유한요소해석에서 얻은 결과값을 사용했다. 손상의 정도와 손상의 위치를 보다 정확히 찾아내기 위한 기술 중의 한 방법으로 Modal Test를 이용하였다. 이 방법이 Post-Tensioned Segmental 콘크리트 교량에 적용되어 교량의 안전도를 분석 평가하였다.

  • PDF

Buckling of post-tensioned composite beams

  • Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.1
    • /
    • pp.113-123
    • /
    • 1994
  • A method for computing the elastic buckling prestressing force of a post-tensioned composite steel-concrete tee-beam is presented. The method is based on a virtual work formulation, and incorporates the restraint provided by the concrete slab to the buckling displacements of the steel beam. The distortional buckling solutions are shown to be given by a quadratic equation. The application of the analysis to calculation buckling strengths is given, based on codified rules for beam-columns. Conclusions are then drawn on the importance of distortional buckling when a post-tensioned composite beam is stressed during jacking.

A Study on the Structural Performance of Post Tensioned Concrete Beam and Slab Subjected to High Temperature (고온을 받은 포스트텐션 콘크리트 보와 슬래브의 구조성능 연구)

  • Choi, Kwang-Ho;Lee, Joong-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.217-223
    • /
    • 2017
  • This research was planned to evaluate the structural performance of post tensioned(PT) concrete member subjected to fire. Prime objective was to suggest some techniques to evaluate the performance of post tensioned concrete beam and slab exposed to high temperature through experiment. To accomplish this objective, the following two scopes have been proceeded to verify the strength reducing ratio of strands and find out the difference of resisting force at the PT concrete members exposed to high temperature through the fire test. The properties of prestressing steel(tendon) in PT concrete beam and slab under variable temperatures were reviewed. The test of this study was shown that stress relaxation occurred at high temperature, and some restoration of tensional force appeared as it got cooling down. The residual tension of the post tensioned beams at 4 hours after reaching the target temperature were 70% at $400^{\circ}C$, 10% at $600^{\circ}C$ and 2% at $800^{\circ}C$. The post tensioned slabs were 94% at $400^{\circ}C$, 84.5% at $600^{\circ}C$ and 62% at $800^{\circ}C$. The reason why the residual tension loss of the post tensioned slab was relatively small was considered to be that the slab was exposed just one side to high temperature and the strength of the strand was restored larger than that of beam. Also, it was confirmed that the post tensioned member inevitably experienced the loss of strength by fire damage, and restoration design of the member should be required to compensate for the value as much as lost strength.

Behavior of Post-Tensioned Prestressed Concrete Pavement under Prestress Application (포스트텐션드 콘크리트 포장의 프리스트레스 도입 시 거동 분석)

  • Park, Hee-Beom;Kim, Seong-Min;Kim, Dong-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.137-138
    • /
    • 2009
  • This study was conducted to analyze the behavior of PTCP (Post-Tensioned prestressed Concrete Pavement) under tensioning by performing field tests when the experimental PTCP slab was being constructed.

  • PDF