• Title/Summary/Keyword: Post structures

Search Result 943, Processing Time 0.025 seconds

Gene annotation by the "interactome"analysis in KEGG

  • Kanehisa, Minoru
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.56-58
    • /
    • 2000
  • Post-genomics may be defined in different ways depending on how one views the challenges after the genome. A popular view is to follow the concept of the central dogma in molecular biology, namely from genome to transcriptome to proteome. Projects are going on to analyze gene expression profiles both at the mRNA and protein levels and to catalog protein 3D structure families, which will no doubt help the understanding of information in the genome. However complete, such catalogs of genes, RNAs, and proteins only tell us about the building blocks of life. They do not tell us much about the wiring (interaction) of building blocks, which is essential for uncovering systemic functional behaviors of the cell or the organism. Thus, an alternative view of post-genomics is to go up from the molecular level to the cellular level, and to understand, what I call, the "interactome"or a complete picture of molecular interactions in the cell. KEGG (http://www.genome.ad.jp/kegg/) is our attempt to computerize current knowledge on various cellular processes as a collection of "generalized"protein-protein interaction networks, to develop new graph-based algorithms for predicting such networks from the genome information, and to actually reconstruct the interactomes for all the completely sequenced genomes and some partial genomes. During the reconstruction process, it becomes readily apparent that certain pathways and molecular complexes are present or absent in each organism, indicating modular structures of the interactome. In addition, the reconstruction uncovers missing components in an otherwise complete pathway or complex, which may result from misannotation of the genome or misrepresentation of the KEGG pathway. When combined with additional experimental data on protein-protein interactions, such as by yeast two-hybrid systems, the reconstruction possibly uncovers unknown partners for a particular pathway or complex. Thus, the reconstruction is tightly coupled with the annotation of individual genes, which is maintained in the GENES database in KEGG. We are also trying to expand our literature surrey to include in the GENES database most up-to-date information about gene functions.

  • PDF

Repair of seismically damaged RC bridge bent with ductile steel bracing

  • Bazaez, Ramiro;Dusicka, Peter
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.745-757
    • /
    • 2018
  • The inclusion of a ductile steel bracing as means of repairing an earthquake-damaged bridge bent is evaluated and experimentally assessed for the purposes of restoring the damaged bent's strength and stiffness and further improving the energy dissipation capacity. The study is focused on substandard reinforced concrete multi-column bridge bents constructed in the 1950 to mid-1970 in the United States. These types of bents have numerous deficiencies making them susceptible to seismic damage. Large-scale experiments were used on a two-column reinforced concrete bent to impose considerable damage of the bent through increasing amplitude cyclic deformations. The damaged bent was then repaired by installing a ductile fuse steel brace in the form of a buckling-restrained brace in a diagonal configuration between the columns and using post-tensioned rods to strengthen the cap beam. The brace was secured to the bent using steel gusset plate brackets and post-installed adhesive anchors. The repaired bent was then subjected to increasing amplitude cyclic deformations to reassess the bent performance. A subassemblage test of a nominally identical steel brace was also conducted in an effort to quantify and isolate the ductile fuse behavior. The experimental data from these large-scale experiments were analyzed in terms of the hysteretic response, observed damage, internal member loads, as well as the overall stiffness and energy dissipation characteristics. The results of this study demonstrated the effectiveness of utilizing ductile steel bracing for restoring the bent and preventing further damage to the columns and cap beams while also improving the stiffness and energy dissipation characteristics.

An Experimental Study on the Shear Strength of Chemical Anchors Embedded into Non Cracking Plain Concrete (비균열 무근콘크리트에 매입된 케미컬 앵커의 전단내력에 관한 실험적 연구)

  • Seo, Seong-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.21-29
    • /
    • 2017
  • The use of post installed anchors with adhesive type has lately been increasing when it is necessary to repair, reinforce, or remodel structures. This method provides flexibility and simplicity for construction of structural members that require adhering or fixing. Meanwhile, strength evaluation of anchors with expansion type among post installed anchors systems has nearly reached setting up stage like design code through continual experimental studies for the last ten years, but analyses or experimental studies on anchor system with adhesive type are not yet sufficient. Accordingly, the designers and builders of korea depend on foreign design codes since there are no exact domestic design code they could credit. In this study, the objectives are investigating the effects on adhesive strength of anchors embedded into plain concrete by shear experiments of anchors with variables such as edge distance, anchor interval, and load direction and supplying basic data for enactment of domestic design code.

DEVELOPMENT OF FINITE ELEMENT HUMAN NECK MODEL FOR VEHICLE SAFETY SIMULATION

  • Lee, I.H.;Choi, H.Y.;Lee, J.H.;Han, D.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.33-46
    • /
    • 2004
  • A finite element model development of a 50th percentile male cervical spine is presented in this paper. The model consists of rigid, geometrically accurate vertebrae held together with deformable intervertibral disks, facet joints, and ligaments modeled as a series of nonlinear springs. These deformable structures were rigorously tuned, through failure, to mimic existing experimental data; first as functional unit characterizations at three cervical levels and then as a fully assembled c-spine using the experimental data from Duke University and other data in the NHTSA database. After obtaining satisfactory validation of the performance of the assembled ligamentous cervical spine against available experimental data, 22 cervical muscle pairs, representing the majority of the neck's musculature, were added to the model. Hill's muscle model was utilized to generate muscle forces within the assembled cervical model. The muscle activation level was assumed to be the same for all modeled muscles and the degree of activation was set to correctly predict available human volunteer experimental data from NBDL. The validated model is intended for use as a post processor of dummy measurement within the simulated injury monitor (SIMon) concept being developed by NHTSA where measured kinematics and kinetic data obtained from a dummy during a crash test will serve as the boundary conditions to "drive" the finite element model of the neck. The post-processor will then interrogate the model to determine whether any ligament have exceeded its known failure limit. The model will allow a direct assessment of potential injury, its degree and location thus eliminating the need for global correlates such as Nij.

Flexural Behavior Characteristics of Steel I-Beam Strengthened by the Post-tensioning Method on the Field Experiment (현장실험을 통한 외부 후긴장 Steel I-Beam의 휨 거동 특성)

  • Cho, Doo-Yong;Park, Dae-Yul;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.151-158
    • /
    • 2002
  • Recently, the externally prestressed unbonded steel I-beam bridges have been increasingly built. The mechanical behavior of prestressed steel I-beams which are with external unbonded tendon is different from that of normal bonded PSC beams in a point of that the slip of tendons at deviators and the change of tendon eccentricity occurs, when external loads are applied in external unbonded steel I-beams. The concept of prestressing steel structures has not been widely considered, in spite of long and successful history of prestressing concrete members. In this study, The field experiment on prestressed steel I-beams has been performed in the various aspects of prestressed I-beam including the tend on type and profile.

Does hyrax expansion therapy affect maxillary sinus volume? A cone-beam computed tomography report

  • Darsey, Drew M.;English, Jeryl D.;Kau, Chung H.;Ellis, Randy K.;Akyalcin, Sercan
    • Imaging Science in Dentistry
    • /
    • v.42 no.2
    • /
    • pp.83-88
    • /
    • 2012
  • Purpose : The aim of this study was to investigate the initial effects of maxillary expansion therapy with Hyrax appliance and to evaluate the related changes in maxillary sinus volume. Materials and Methods : Thirty patients (20 females, 10 males; 13.8 years) requiring maxillary expansion therapy, as part of their comprehensive orthodontic treatment, were examined. Each patient had cone-beam computed tomography (CBCT) images taken before (T1) and after (T2) maxillary expansion therapy with a banded Hyrax appliance. Multiplanar slices were used to measure linear dimensions and palatal vault angle. Volumetric analysis was used to measure maxillary sinus volumes. Student t tests were used to compare the pre- and post-treatment measurements. Additionally, differences between two age groups were compared with Mann-Whitney U test. The level of significance was set at p=0.05. Results : Comparison of pre-treatment to post-treatment variables revealed significant changes in the transverse dimension related to both maxillary skeletal and dental structures and palatal vault angle, resulting in a widened palatal vault (p<0.05). Hard palate showed no significant movement in the vertical and anteroposterior planes. Nasal cavity width increased on a mean value of 0.93mm(SD=0.23, p<0.05). Maxillary sinus volume remained virtually stable. No significant age differences were observed in the sample. Conclusion : Hyrax expansion therapy did not have a significant impact on maxillary sinus volume.

Bioconversion of Ginsenoside Rd into Compound K by Lactobacillus pentosus DC101 Isolated from Kimchi

  • Quan, Lin-Hu;Cheng, Le-Qin;Kim, Ho-Bin;Kim, Ju-Han;Son, Na-Ri;Kim, Se-Young;Jin, Hyun-O;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.34 no.4
    • /
    • pp.288-295
    • /
    • 2010
  • Ginsenosides are the principal components responsible for the pharmacological and biological activities of ginseng. Ginsenoside Rd was transformed into compound K using cell-free extracts of food microorganisms, with Lactobacillus pentosus DC101 isolated from kimchi (traditional Korean fermented food) used for this conversion. The optimum time for the conversion was about 72 h at a constant pH of 7.0 and an optimum temperature of about $30^{\circ}C$. The transformation products were identified by thin-layer chromatography and high-performance liquid chromatography, and their structures were assigned using nuclear magnetic resonance analysis. Generally, ginsenoside Rd was converted into ginsenoside F2 by 36 h post-reaction. Consequently, over 97% of ginsenoside Rd was decomposed and converted into compound K by 72 h post-reaction. The bioconversion pathway to produce compound K is as follows: ginsenoside Rd$\rightarrow$ginsenoside F2$\rightarrow$compound K.

A Study on the Group Program for Improving Self-Esteem and Assertiveness of the Chronically Mentally Ill Living in the Institutions (시설 거주 정신장애인의 자부심과 자기표현 향상을 위한 집단프로그램 개발 및 효과에 관한 연구)

  • Lee, Eun-Joo
    • Korean Journal of Social Welfare
    • /
    • v.47
    • /
    • pp.272-309
    • /
    • 2001
  • It is a recent trend to emphasize community services for the rehabilitation of the mentally ill. However, it is also necessary to provide social work services for those living in the institutions, who is the most underprivileged in our society. To deal with interpersonal skill deficits which is one of the main characteristics of the mentally ill, social skills programs are being utilized, usually in the communities, but not in the institutions. Therefore, the objective of this study is to develop and evaluate institution-relevant program for the improvement of assertiveness, which is the basic ability among the interpersonal skills, and self-esteem, which is the emotional basis of assertiveness. Because there has been little literature on such a program, a preliminary program had been implemented in order to include the peculiarities of the life in the institutions on the main program. The evaluation of the program effect was done by pretest-post test control group design, and its results are as follows. Firstly, in regard to program effectiveness, the pre and post test showed that self-esteem improved in a statistically meaningful way, but that assertiveness did not so. However, the staff verified the improvement of the group members' assertiveness to some degree in their actual lives. Secondly, in regard to the group process, the group interaction improved in a statistically meaningful way between 2nd and 5th session, and the improvement maintained till the program termination. Also the group members evaluated the program as helpful in their everyday lives. Therefore it can be said that the result of this program is encouraging. In light of this, several suggestions were made: utilizing more dynamic techniques in the program; developing the advanced level of the program; making an effort to change environmental structures as well as individuals; applying this kind of program to another living facilities such as those for the homeless or handicapped.

  • PDF

An electromechanical impedance-based method for tensile force estimation and damage diagnosis of post-tensioning systems

  • Min, Jiyoung;Yun, Chung-Bang;Hong, Jung-Wuk
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.107-122
    • /
    • 2016
  • We propose an effective methodology using electromechanical impedance characteristics for estimating the remaining tensile force of tendons and simultaneously detecting damages of the anchorage blocks. Once one piezoelectric patch is attached on the anchor head and the other is bonded on the bearing plate, impedance responses are measured through these two patches under varying tensile force conditions. Then statistical indices are calculated from the impedances, and two types of relationship curves between the tensile force and the statistical index (TE Curve) and between statistical indices of two patches (SR Curve) are established. Those are considered as database for monitoring both the tendon and the anchorage system. If damage exists on the bearing plate, the statistical index of patch on the bearing plate would be out of bounds of the SR curve and damage can be detected. A change in the statistical index by damage is calibrated with the SR curve, and the tensile force can be estimated with the corrected index and the TE Curve. For validation of the developed methodology, experimental studies are performed on the scaled model of an anchorage system that is simplified only with 3 solid wedges, a 3-hole anchor head, and a bearing plate. Then, the methodology is applied to a real scale anchorage system that has 19 strands, wedges, an anchor head, a bearing plate, and a steel duct. It is observed that the proposed scheme gives quite accurate estimation of the remaining tensile forces. Therefore, this methodology has great potential for practical use to evaluate the remaining tensile forces and damage status in the post-tensioned structural members.

The Edge-Based Motion Vector Processing Based on Variable Weighted Vector Median Filter (에지 기반 가변 가중치 벡터 중앙값 필터를 이용한 움직임 벡터 처리)

  • Park, Ju-Hyun;Kim, Young-Chul;Hong, Sung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11C
    • /
    • pp.940-947
    • /
    • 2010
  • Motion Compensated Frame Interpolation(MCFI) has been used to reduce motion jerkiness for dynamic scenes and motion blurriness for LCD-panel display as post processing for high quality display. However, MCFI that directly uses the motion information often suffers from annoying artifacts such as blockiness, ghost effects, and deformed structures. So in this paper, we propose a novel edge-based adaptively weighted vector median filter as post-processing. At first, the proposed method generates an edge direction map through a sobel mask and a weighted maximum frequent filter. And then, outlier MVs are removed by average of angle difference and replaced by a median MV of $3{\times}3$ window. Finally, weighted vector median filter adjusts the weighting values based on edge direction derived from spatial coherence between the edge direction continuity and motion vector. The results show that the performance of PSNR and SSIM are higher up to 0.5 ~ 1 dB and 0.4 ~ 0.8 %, respectively.