• 제목/요약/키워드: Post structures

검색결과 935건 처리시간 0.025초

삽입된 광강도형 광섬유센서가 지능형 복합재 구조물의 건전성에 미치는 영향 및 피로손상 감시 (Effect on the structural integrity and fatigue damage monitoring of smart composite structures with embedded intensity based optical fiber sensors)

  • 이동춘;이정주;서대철;허증수
    • 센서학회지
    • /
    • 제10권1호
    • /
    • pp.42-51
    • /
    • 2001
  • 본 연구에서는 복합재료에 삽입된 광섬유센서의 인장하중하에서의 정적 물성치와 피로하중하에서의 동적 물성치를 실험적인 방법과 유한요소해석을 통하여 고찰하였다. 결과에 의하면 삽입된 광섬유센서는 인접한 강화섬유에 수직한 방향으로 삽입된 피로하중의 경우를 제외하고 복합재료의 기계적인 물성치에 큰 영향을 끼치지 않는다고 결론지을 수 있다. 광강도형 광섬유센서를 복합재료 적층판에 삽입하여 복합재 적층판의 강성저하를 측정함으로써 직교적층판 피로손상을 검출하였다. 이 실험의 결과에 의하면 광강도형 광섬유센서는 간단하고 저렴한 장치와 측정된 신호의 복잡한 후처리 과정이 필요 없다는 장점으로 인하여 구조물의 강성저하를 측정하여 피로손상을 감시하는데 있어서 큰 잠재력을 가진다고 할 수 있다. 또한 삽입된 광강도형 광섬유센서는 우수한 내 피로성과 넓은 강성측정 범위를 보였다.

  • PDF

Impact response of a novel flat steel-concrete-corrugated steel panel

  • Lu, Jingyi;Wang, Yonghui;Zhai, Ximei;Zhou, Hongyuan
    • Steel and Composite Structures
    • /
    • 제42권2호
    • /
    • pp.277-288
    • /
    • 2022
  • A novel flat steel plate-concrete-corrugated steel plate (FS-C-CS) sandwich panel was proposed for resisting impact load. The failure mode, impact force and displacement response of the FS-C-CS panel under impact loading were studied via drop-weight impact tests. The combined global flexure and local indentation deformation mode of the FS-C-CS panel was observed, and three stages of impact process were identified. Moreover, the effects of corrugated plate height and steel plate thickness on the impact responses of the FS-C-CS panels were quantitatively analysed, and the impact resistant performance of the FS-C-CS panel was found to be generally improved on increasing corrugated plate height and thickness in terms of smaller deformation as well as larger impact force and post-peak mean force. The Finite Element (FE) model of the FS-C-CS panel under impact loading was established to predict its dynamic response and further reveal its failure mode and impact energy dissipation mechanism. The numerical results indicated that the concrete core and corrugated steel plate dissipated the majority of impact energy. In addition, employing end plates and high strength bolts as shear connectors could prevent the slip between steel plates and concrete core and assure the full composite action of the FS-C-CS panel.

Multiscale modeling of reinforced/prestressed concrete thin-walled structures

  • Laskar, Arghadeep;Zhong, Jianxia;Mo, Y.L.;Hsu, Thomas T.C.
    • Interaction and multiscale mechanics
    • /
    • 제2권1호
    • /
    • pp.69-89
    • /
    • 2009
  • Reinforced and prestressed concrete (RC and PC) thin walls are crucial to the safety and serviceability of structures subjected to shear. The shear strengths of elements in walls depend strongly on the softening of concrete struts in the principal compression direction due to the principal tension in the perpendicular direction. The past three decades have seen a rapid development of knowledge in shear of reinforced concrete structures. Various rational models have been proposed that are based on the smeared-crack concept and can satisfy Navier's three principles of mechanics of materials (i.e., stress equilibrium, strain compatibility and constitutive laws). The Cyclic Softened Membrane Model (CSMM) is one such rational model developed at the University of Houston, which is being efficiently used to predict the behavior of RC/PC structures critical in shear. CSMM for RC has already been implemented into finite element framework of OpenSees (Fenves 2005) to come up with a finite element program called Simulation of Reinforced Concrete Structures (SRCS) (Zhong 2005, Mo et al. 2008). CSMM for PC is being currently implemented into SRCS to make the program applicable to reinforced as well as prestressed concrete. The generalized program is called Simulation of Concrete Structures (SCS). In this paper, the CSMM for RC/PC in material scale is first introduced. Basically, the constitutive relationships of the materials, including uniaxial constitutive relationship of concrete, uniaxial constitutive relationships of reinforcements embedded in concrete and constitutive relationship of concrete in shear, are determined by testing RC/PC full-scale panels in a Universal Panel Tester available at the University of Houston. The formulation in element scale is then derived, including equilibrium and compatibility equations, relationship between biaxial strains and uniaxial strains, material stiffness matrix and RC plane stress element. Finally the formulated results with RC/PC plane stress elements are implemented in structure scale into a finite element program based on the framework of OpenSees to predict the structural behavior of RC/PC thin-walled structures subjected to earthquake-type loading. The accuracy of the multiscale modeling technique is validated by comparing the simulated responses of RC shear walls subjected to reversed cyclic loading and shake table excitations with test data. The response of a post tensioned precast column under reversed cyclic loads has also been simulated to check the accuracy of SCS which is currently under development. This multiscale modeling technique greatly improves the simulation capability of RC thin-walled structures available to researchers and engineers.

원형 정착판을 사용한 포스트텐션 특수정착구의 설계에 관한 연구 (A Study on the Design of Special Circular Plate Anchorage for Post-tension)

  • 최규형;노병철;임정훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권6호
    • /
    • pp.73-83
    • /
    • 2016
  • 포스트텐션 공법을 적용한 콘크리트 부재의 정착구역에서 정착판 근처의 지압응력은 일반적으로 높은 프리스트레스 하중에 의해 발생한다. 따라서 단면의 효율적인 활용과 콘크리트 부재의 파괴로 이어질 수 있는 균열제어를 위해 적절한 정착판의 크기가 제시되어야 한다. 본 연구에서는 도로교설계기준 및 PTI 등에 의해 사각형 정착판과 원형 정착판의 유효면적에 대한 관계식을 제안하였다. 또한 정착판의 형상에 따라 형상계수를 제안하였으며, 유한요소해석을 통해 적절성을 분석하였다.

경계요소법에 의한 콘크리트 구조물의 진행성 파괴해석 (Fracture Analysis of Concrete Structures using Boundary Element Method)

  • 송하원;전재홍
    • 전산구조공학
    • /
    • 제9권4호
    • /
    • pp.127-134
    • /
    • 1996
  • 본 논문은 경계요소법에 의한 콘크리트의 진행성 파괴해석에 관한 연구이다. 콘크리트의 파괴진행해석을 위하여 경계요소법에 의한 변위 및 표면력 경계 적분방정식으로부터 균열을 포함한 연속체의 균열 경계적분 방정식을 정식화하였다. 콘크리트의 균열진행을 해석하기 위하여 균열 선단에서의 파괴진행영역을 Dugdale-Barenblatt형 모델을 사용하여 모델링하였고 균열진행영역의 인장연화상태를 선형으로 가정하여 모델링하였다. 정식화된 경계적분방정식에 의한 콘크리트 보와 여러가지 하중상태에 있는 인장시편에 대한 진행성 파괴해석을 실시하였으며 해석치와 실험치의 비교로부터 경계요소법에 의한 진행성 파괴해석방법은 최대하중 및 최대하중 이후의 거동을 포함한 콘크리트 구조물의 비선형 거동을 잘 예측함을 보여주고 있다 .

  • PDF

손상평가와 구조물 신뢰성과의 연계 (Linkage of Damage Evaluation to Structural System Reliability)

  • 박수용
    • 한국강구조학회 논문집
    • /
    • 제15권1호
    • /
    • pp.41-50
    • /
    • 2003
  • 구조물에 대한 비파괴 손상평가는 손상 전과 손상 후의 동적 특성으로부터 손상의 위치와 그 크기에 대한 정보를 제공한다. 기존 구조물의 시스템 신뢰도를 추정하기 위해서는 이러한 비파괴 손상평가의 결과가 부재요소의 파괴확률에 반영되어야 한다. 구조 부재의 파괴확률은 각 부재의 파괴함수로부터 신뢰성 이론을 이용하여 구할 수 있다. 본 논문에서는 각 부재의 파괴확률로부터 직접 구조 시스템의 파괴확률을 구할 수 있는 식을 제안하였다. 손상평가와 신뢰성평가 분야의 연계는 철골조 단층 프레임의 수치해석 모델에 인위적인 손상을 가하여 손상 전과 손상 후의 모달 변수를 이용하여 그 타당성을 입증하였다.

Morphologic Changes in Microcystin-LR Treated Hepatocytes In vitro

  • Rhee, Seong-Hee;Kim, Bum-Seok;Lim, Chae-Woong
    • Toxicological Research
    • /
    • 제22권3호
    • /
    • pp.301-306
    • /
    • 2006
  • Microcystin-LR(MC-LR), a cyanobacterial toxin produced by Microcystis aeruginosa, causes severe hepatotoxicity. Here we investigated the morphologic changes of rat hepatocyte spheroid induced by exposure of MC-LR($10^{-6}M$) in vitro. In addition, to determine the effects of such toxin in the process of hepatocyte spheroid formation, primarily isolated hepatocytes were incubated with MC-LR and the process of spheroid formation was observed. In both hepatocyte spheroid and suspension culture systems, the morphologic changes caused by MC-LR were noticible at 5 min post exposure and were characterized by the loss of microvilli, cytoplasmic vacuolation, the accumulation of lipid droplets, and blob formation. Especially, the size and numbers of blob on the cell surface were increased as the incubation time prolonged and the appearance of electron dense bodies were observed in the cytoplasm of hepatocyte at 20 min post exposure. Furthermore, bile canaliculi-like structures in the hepatocyte spheroids were slightly widened and the process of spheroids formation was inhibited in the isolated hepatocytes incubated with MC-LR. These results indicate that morphologic changes in. the hepatocyte membrane and organelles seem to be typical events in showing the MC-LR induced hepatotoxic effects and the spheroid culture method might be a useful experimental tool to evaluate hepatoxicity since it reflects the in vivo status of hepatocytes.

해양구조물 설계코드에 기반한 좌굴강도 평가 시스템 개발 (Development of the Buckling Strength Assessment System based on Offshore Structure Design Code)

  • 김을년
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2017년도 특별논문집
    • /
    • pp.38-45
    • /
    • 2017
  • FPSO is widely used to develop deep sea oil fields and HHI has constructed ten(10) FPSOs. During these constructions, relevant structural design criteria such as yielding, buckling, fatigue, collision and impact strength were applied to verify structural safety. To apply the buckling strength evaluation for structures, the critical buckling stresses and applied stresses of relevant panels should be calculated. The plate and stiffened panels are to be idealized, which are needed much time and efforts by designers. Therefore, program development is necessary in order to evaluate the buckling strength conveniently and accurately. In this study, the buckling strength assessment system by using offshore code, DNV-RP-C201 was developed under MSC/PATRAN, pre-post program of finite element method. Graphic user interface program is written in MSC/PATRAN PCL functions. Source program to evaluate the buckling strength is developed in FORTRAN programming languages. The developed program is verified by comparing with the results of the Nauticus Hull developed by DNV Classification Society, and applied to the marine construction project conducted by Hyundai Heavy Industries LTD.

  • PDF

적층 성형 과정에서 고립 체적의 효율적 계산 (Efficient Calculation of Trapped Volumes in Layered Manufacturing Process)

  • 김진영;이건우;정융호
    • 한국정밀공학회지
    • /
    • 제15권2호
    • /
    • pp.154-161
    • /
    • 1998
  • Prototypes of a design are always needed for the purpose of visualization and evaluation in the aspect of manufacturability functionality, and aesthetic appearance. Since the prototyping process requires a significant amount of cost and time, various rapid prototyping processes are recently being introduced in the process. However, it is usually necessary for a part built up by a rapid prototyping system to be refined by a post-processing process, in which the stair steps on the surfaces, the support structures (if they exist), and the unprocessed material are eliminated. This post-processing is usually done manually and is a time-consuming task. Especially, eliminating the trapped volumes, the volume of the unprocessed material entrapped by the solidified portion, is sometimes impossible in some processes. This study provides a designer with a tool to detect the existence and to calculate the quantity of the trapped volumes at the given build-up direction, so that the proper build-up direction is chosen or the part is built by pieces to avoid the problems caused by the trapped volumes in advance. Since the proposed algorithm can efficiently calculate the amount of the trapped volumes at any build-up direction, it has the potential of such application as optimizing the build-up direction to minimize the trapped volumes.

  • PDF

Anchorage Effects of Various Steel Fibre Architectures for Concrete Reinforcement

  • Abdallah, Sadoon;Fan, Mizi;Zhou, Xiangming;Geyt, Simon Le
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권3호
    • /
    • pp.325-335
    • /
    • 2016
  • This paper studies the effects of steel fibre geometry and architecture on the cracking behaviour of steel fibre reinforced concrete (SFRC), with the reinforcements being four types, namely 5DH ($Dramix^{(R)}$ hooked-end), 4DH, 3DH-60 and 3DH-35, of various hooked-end steel fibres at the fibre dosage of 40 and $80kg/m^3$. The test results show that the addition of steel fibres have little effect on the workability and compressive strength of SFRC, but the ultimate tensile loads, post-cracking behaviour, residual strength and the fracture energy of SFRC are closely related to the shapes of fibres which all increased with increasing fibre content. Results also revealed that the residual tensile strength is significantly influenced by the anchorage strength rather than the number of the fibres counted on the fracture surface. The 5DH steel fibre reinforced concretes have behaved in a manner of multiple crackings and more ductile compared to 3DH and 4DH ones, and the end-hooks of 4DH and 5DH fibres partially deformed in steel fibre reinforced self-compacting concrete (SFR-SCC). In practice, 5DH fibres should be used for reinforcing high or ultra-high performance matrixes to fully utilize their high mechanical anchorage.