• Title/Summary/Keyword: Post structures

Search Result 935, Processing Time 0.026 seconds

Fundamental aspects on the seismic vulnerability of ancient masonry towers and retrofitting techniques

  • Preciado, Adolfo;Bartoli, Gianni;Budelmann, Harald
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.339-352
    • /
    • 2015
  • Ancient masonry towers constitute a relevant part of the cultural heritage of humanity. Their earthquake protection is a topic of great concern among researchers due to the strong damage suffered by these brittle and massive structures through the history. The identification of the seismic behavior and failure of towers under seismic loading is complex. This strongly depends on many factors such as soil characteristics, geometry, mechanical properties of masonry and heavy mass, as well as the earthquake frequency content. A deep understanding of these aspects is the key for the correct seismic vulnerability evaluation of towers and to design the most suitable retrofitting measure. Recent tendencies on the seismic retrofitting of historical structures by means of prestressing are related to the use of smart materials. The most famous cases of application of prestressing in towers were discussed. Compared to horizontal prestressing, vertical post-tensioning is aimed at improving the seismic behavior of towers by reducing damage with the application of an overall distribution of compressive stresses at key locations.

Modeling wind load paths and sharing in a wood-frame building

  • He, Jing;Pan, Fang;Cai, C.S.
    • Wind and Structures
    • /
    • v.29 no.3
    • /
    • pp.177-194
    • /
    • 2019
  • While establishing adequate load paths in the light-frame wood structures is critical to maintain the overall structural integrity and avoid significant damage under extreme wind events, the understanding of the load paths is limited by the high redundant nature of this building type. The objective of the current study is to evaluate the system effects and investigate the load paths in the wood structures especially the older buildings for a better performance assessment of the existing building stock under high winds, which will provide guidance for building constructions in the future. This is done by developing building models with configurations that are suspicious to induce failure per post damage reconnaissance. The effect of each configuration to the structural integrity is evaluated by the first failure wind speed, amajor indicator beyond the linear to the nonlinear range. A 3D finite-element (FE) building model is adopted as a control case that is modeled using a validated methodology in a highly-detailed fashion where the nonlinearity of connections is explicitly simulated. This model is then altered systematically to analyze the effects of configuration variations in the model such as the gable end sheathing continuity and the gable end truss stiffness, etc. The resolution of the wind loads from scaled wind tunnel tests is also discussed by comparing the effects to wind loads derived from large-scale wind tests.

Denoising PIV velocity fields and improving vortex identification using spatial filters (공간 필터를 이용한 PIV 속도장의 잡음 제거 및 와류 식별 개선)

  • Jung, Hyunkyun;Lee, Hoonsang;Hwang, Wontae
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.48-57
    • /
    • 2019
  • A straightforward strategy for particle image velocimetry (PIV) interrogation and post-processing has been proposed, aiming at reducing errors and clarifying vortex structures. The interrogation window size should be kept small to reduce bias error and improve spatial resolution. A spatial filter is then applied to the velocity field to reduce random error and clarify flow structure. The performance of three popular spatial filters were assessed: box filter, median filter, and local quadratic polynomial regression filter. In order to quantify random uncertainty, the image matching (IM) method is applied to an experimental dataset of homogeneous and isotropic turbulence (HIT) obtained by 2D-PIV. We statistically analyze the uncertainty propagation through the spatial filters, and verify the reduction in random uncertainty. Moreover, we illustrate that the spatial filters help clarify vortex structures using vortex identification criteria. As a result, PIV random uncertainty was reduced and the vortex structures became clearer by spatial filtering.

Shear performance of an innovative UHPFRC deck of composite bridge with coarse aggregate

  • Qi, Jianan;Wanga, Jingquan;Feng, Yu
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.219-229
    • /
    • 2019
  • This paper presents an experimental study on the structural performance of an innovative ultra-high performance fiber reinforced concrete (UHPFRC) deck with coarse aggregate of composite bridge under shear force. Test parameters included curing method and shear span-to-height ratio. Test results indicated that more short fine cracks developed beside the existing cracks due to the randomly dispersed fibers, resulting in re-distributing and homogenizing of the concrete stress beside cracks and allowing for the occurrence of more cracks with small spacing compared to normal strength concrete beams. Curing methods, incorporating steam curing and natural curing, did not have obvious effect on the nominal bending cracking strength and the ultimate strength of the test specimens. Shear reinforcement need not be provided for UHPFRC decks with a fiber volume fraction of 2%. UHPFRC decks showed superior load resistance ability after the appearance of cracks and excellent post-cracking deformability. Lastly, the current shear provisions were evaluated by the test results.

Tensile and Shear Strengths of New Type of Cast-in-Place Concrete Insert Anchors Under Monotonic Loading (새로운 형태의 선설치 인서트 앵커에 대한 단조 인장 및 전단강도 평가)

  • Jeon, Ju-Seong;Kim, Ji-Hoon;Oh, Chang-Soo;Lee, Chang-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.49-56
    • /
    • 2021
  • The damage to non-structural elements in buildings has been increasing due to earthquakes. In Korea, post-installed anchors produced overseas have been mainly used for seismic anchorage of non-structural components to structures. Recently, a new cast-in-place concrete insert anchor installed in concrete without drilling has been developed in Korea. In this paper, an experimental study was conducted to evaluate the tensile and shear strengths of the newly developed anchor under monotonic load. The failure modes of the tension specimens were divided into concrete breakout failure and steel failure, and all shear specimens showed steel failure. In both tension and shear, the maximum loads of specimens were greater than the nominal strengths predicted by the concrete design code (KDS 14 20 54). As a result, it is expected that the current code can also be used to calculate the strength of the developed cast-in anchor.

Experimental behaviour of circular concrete filled steel tube columns under lateral cyclic loading

  • Cao, Vui Van;Vo, Cuong Trung;Nguyen, Phuoc Trong;Ashraf, Mahmud
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.445-460
    • /
    • 2021
  • This study experimentally explored the behaviour of 12 concrete filled steel tube (CFST) and steel tube columns subjected to lateral cyclic loading. The L/D ratio was 12.3 while D/t ratios were 45.4, 37.8 and 32.4, classifying these 12 specimens into 3 groups. Each group included 3 CFST and 1 steel tube columns and were tested to failure. The experimental results indicated that CFST specimens reached the state of 'collapse prevention' (drift 4%) prior to the occurrence of local buckling. Strength degradation of CFST specimens did not occur up to the failure by buckling. This showed the favourable characteristic of CFST columns in preventing collapse of structures subjected to earthquakes. The high energy absorption capability in the post collapse limit state was appropriate for dissipating energy in structures. Compared to steel tube columns, CFST columns delayed local buckling and prevented inward buckling. Consequently, CFST columns exhibited their outstanding seismic performance in terms of the increased ultimate resistance, capacity to sustain 2-3 additional load cycles and significantly higher drift. A simple and reasonably accurate model was proposed to predict the ultimate strength of CFST columns under lateral cyclic loading.

Feasibility study on using crowdsourced smartphones to estimate buildings' natural frequencies during earthquakes

  • Ting-Yu Hsu;Yi-Wen Ke;Yo-Ming Hsieh;Chi-Ting Weng
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.141-154
    • /
    • 2023
  • After an earthquake, information regarding potential damage to buildings close to the epicenter is very important during the initial emergency response. This study proposes the use of crowdsourced measured acceleration response data collected from smartphones located within buildings to perform system identification of building structures during earthquake excitations, and the feasibility of the proposed approach is studied. The principal advantage of using crowdsourced smartphone data is the potential to determine the condition of millions of buildings without incurring hardware, installation, and long-term maintenance costs. This study's goal is to assess the feasibility of identifying the lowest fundamental natural frequencies of buildings without knowing the orientations and precise locations of the crowds' smartphones in advance. Both input-output and output-only identification methods are used to identify the lowest fundamental natural frequencies of numerical finite element models of a real building structure. The effects of time synchronization and the orientation alignment between nearby smartphones on the identification results are discussed, and the proposed approach's performance is verified using large-scale shake table tests of a scaled steel building. The presented results illustrate the potential of using crowdsourced smartphone data with the proposed approach to identify the lowest fundamental natural frequencies of building structures, information that should be valuable in making emergency response decisions.

A Study on Thin-Film Silicon Solar Cells with Multi-Architecture Etching Technique to Improve Light Trapping (광 포획 향상을 위한 다중 아키텍처 식각 기술을 적용한 박막 실리콘 태양전지에 관한 연구)

  • Hyeong Gi Park;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.337-344
    • /
    • 2024
  • This work focuses on improving the light-harvesting efficiency of thin-film silicon solar cells through innovative multi-architecture surface modifications. To create a regular optical structure, a lithographic process was performed to form it on a glass substrate through various etching processes, from Etch-1 to Etch-3. AZO was deposited on top of the structures and re-etched to create a multi-architectural surface. These surface-modified structures improved the light absorption and overall performance of the solar cell through changes in optical and physical properties, which we will analyze. In addition, we investigated the effect of post-cleaning on the etched glass structures through EDX analysis to understand the mechanism of the etching action. The results of this study are expected to provide important guidelines for the design and fabrication of solar cells and other photovoltaic devices.

An Experimental Study on the Shear Failure Behavior of Post-installed Set Anchor for Concrete (콘크리트용 후설치 세트앵커의 전단파괴거동에 관한 실험적 연구)

  • Um, Chan-Hee;Yoo, Seung-Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.367-375
    • /
    • 2014
  • Recently the use of concrete post-installed set anchors has been increasing because this constructing method is flexible and easy to attach or fix structural members when we repair, reinforce, or remodel a concrete structures. Depending on the shear strength of steel, the strength of concrete, edge distance and anchor interval, etc, the anchor loaded in shearing exhibits various failure modes such as steel failure, concrete failure, concrete pryout. In this study, the objective is to investigate the effects of the variations like anchor embedment depth, anchor interval, edge distance and concrete strength on the shear failure behavior of post-installed concrete set anchor embedded in concrete. The results of embedment depth experiments show that concrete strength has much effection on the shallow embedment depth. Steel failure occur to all results of the anchor interval experiments, but concrete is failed when edge distance experiments that less than the embedment depth. Through the comparision of the same parameters experiments results show that as strong as concrete strength are the displacement results are small.

Seismic response of complex 3D steel buildings with welded and post-tensioned connections

  • Reyes-Salazar, Alfredo;Ruiz, Sonia E.;Bojorquez, Eden;Bojorquez, Juan;Llanes-Tizoc, Mario D.
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.217-243
    • /
    • 2016
  • The linear and nonlinear seismic responses of steel buildings with perimeter moment resisting frames and welded connections (WC) are estimated and compared with those of buildings with post-tensioned connections (PC). Two-dimensional (2D) and three-dimensional (3D) structural representations of the buildings as well as global and local response parameters are considered. The seismic responses and structural damage of steel buildings with PC may be significantly smaller than those of the buildings with typical WC. The reasons for this are that the PC buildings dissipate more hysteretic energy and attract smaller inertia forces. The response reduction is larger for global than for local response parameters. The reduction may significantly vary from one structural representation to another. One of the main reasons for this is that the energy dissipation characteristics are quite different for the 2D and 3D models. In addition, in the case of the 3D models, the contribution of each horizontal component to the axial load on an specific column may be in phase each other during some intervals of time, but for some others they may be out of phase. It is not possible to observe this effect on the 2D structural formulation. The implication of this is that 3D structural representation should be used while estimating the effect of the PC on the structural response. Thus, steel frames with post-tensioned bolted connections are a viable option in high seismicity areas due to the fact that brittle failure is prevented and also because of their reduced response and self-centering capacity.