• Title/Summary/Keyword: Post structures

Search Result 935, Processing Time 0.025 seconds

Prediction of Post-cracking Behavior of Synthetic Fiber Reinforced Concrete Beams (합성섬유 보강 콘크리트 보의 후균열 거동 예측에 관한 연구)

  • 오병환;김지철;박대균;한일영;김방래;유홍종
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.587-592
    • /
    • 2002
  • Fiber reinforced concrete has been used for tunnel lining and rehabilitation of old structures. Recently, structural synthetic fiber was developed to overcome the corrosive properties of steel fibers. Fibers play a role to increase the tensile and cracking resistance of concrete structures. The Post cracking behavior must be clarified to predict cracking resistance of fiber reinforced concrete. The purpose of the present study is to develop a realistic analysis method for post cracking behavior of synthetic fiber reinforced concrete members.

  • PDF

GRADED POST-LIE ALGEBRA STRUCTURES, ROTA-BAXTER OPERATORS AND YANG-BAXTER EQUATIONS ON THE W-ALGEBRA W(2, 2)

  • Tang, Xiaomin;Zhong, Yongyue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1727-1748
    • /
    • 2018
  • In this paper, we characterize the graded post-Lie algebra structures on the W-algebra W(2, 2). Furthermore, as applications, the homogeneous Rota-Baxter operators on W(2, 2) and solutions of the formal classical Yang-Baxter equation on $W(2,2){\ltimes}_{ad^*} W(2,2)^*$ are studied.

Design Optimization of Safety Barrier Consisting of Steel Rail and CFRP Post (강재 레일과 CFRP 기둥으로 이루어진 방호울타리의 최적화 설계)

  • Kim, Jung Joong;Kim, Seung-Eock
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.25-30
    • /
    • 2013
  • In this study a hybrid safety barrier system consisting of steel rail and carbon fiber reinforced polymer (CFRP) post is considered. W hile CFRP post is selected for impact energy reflection due to its high strength, steel rail is selected for impact energy absorption due to its high ductility. A numerical model considering the elastoplastic behavior of steel is formulated to simulate the dynamic responses of the hybrid system subject to an impact load. A hybrid roadside guard rail system of steel rail and CFRP post is proposed and analyzed with a case study. The numerical model for the hybrid roadside guard rail system is used to find optimized design of the proposed hybrid system.

Seismic Responses of Seismically Isolated Nuclear Power Plant Structure Considering Post-Yield Stiffness of EQS Bearing (EQS 면진장치의 항복 후 강성을 고려한 면진 원전구조물의 지진응답)

  • Kim, Byeong-Su;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.319-329
    • /
    • 2016
  • The Eradi Quake System (EQS) is a seismic isolation bearing system designed to minimize forces and displacements experienced by structures subjected to ground motion. The EQS dissipates seismic energy through friction of Poly Tetra Fluoro Ethylene (PTFE) disk pad. In general, a force-displacement relationship of EQS has post yield stiffness hardening during large inelastic displacement. In this study, seismic responses of seismically isolated nuclear power plant (NPP) subjected to design basis earthquake (DBE) and beyond design basis earthquakes (150% DBE and 167% DBE) are compared considering the post yield stiffness hardening effect of EQS. From the results, it can be observed that if the post-yield stiffness hardening effect of EQS is increased, the displacement response of EQS is reduced, and the acceleration and shear responses of containment structures of NPP is increased.

Computer vision and deep learning-based post-earthquake intelligent assessment of engineering structures: Technological status and challenges

  • T. Jin;X.W. Ye;W.M. Que;S.Y. Ma
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.311-323
    • /
    • 2023
  • Ever since ancient times, earthquakes have been a major threat to the civil infrastructures and the safety of human beings. The majority of casualties in earthquake disasters are caused by the damaged civil infrastructures but not by the earthquake itself. Therefore, the efficient and accurate post-earthquake assessment of the conditions of structural damage has been an urgent need for human society. Traditional ways for post-earthquake structural assessment rely heavily on field investigation by experienced experts, yet, it is inevitably subjective and inefficient. Structural response data are also applied to assess the damage; however, it requires mounted sensor networks in advance and it is not intuitional. As many types of damaged states of structures are visible, computer vision-based post-earthquake structural assessment has attracted great attention among the engineers and scholars. With the development of image acquisition sensors, computing resources and deep learning algorithms, deep learning-based post-earthquake structural assessment has gradually shown potential in dealing with image acquisition and processing tasks. This paper comprehensively reviews the state-of-the-art studies of deep learning-based post-earthquake structural assessment in recent years. The conventional way of image processing and machine learning-based structural assessment are presented briefly. The workflow of the methodology for computer vision and deep learning-based post-earthquake structural assessment was introduced. Then, applications of assessment for multiple civil infrastructures are presented in detail. Finally, the challenges of current studies are summarized for reference in future works to improve the efficiency, robustness and accuracy in this field.

Unified equivalent frame method for post-tensioned flat plate slab structures

  • Choi, Seung-Ho;Lee, Deuck Hang;Oh, Jae-Yuel;Kim, Kang Su;Lee, Jae-Yeon;Lee, Kang Seok
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.663-670
    • /
    • 2017
  • The post-tensioned (PT) flat plate slab system is commonly used in practice, and this simple and fast construction method is also considered to be a very efficient method because it can provide excellent deflection and crack control performance under a service load condition and consequently can be advantageous when applying to long-span structures. However, a detailed design guideline for evaluating the lateral behavior of the PT flat plate slab system is not available in current design codes. Thus, typical design methods used for conventional reinforced concrete (RC) flat plate slab structures have inevitably been adopted in practice for the lateral load design of PT flat plate structures. In the authors' previous studies, the unified equivalent frame method (UEFM) was proposed, which considers the combined effect of gravity and lateral loads for the lateral behavior analysis of RC flat plate slab structures. The aim of this study is to extend the concept of the UEFM to the lateral analysis of PT flat plate slab structures. In addition, the stiffness reduction factors of torsional members on interior and exterior equivalent frames were newly introduced considering the effect of post-tensioning. Test results of various PT flat plate slab-column connection specimens were collected from literature, and compared to the analysis results estimated by the extended UEFM.

A post-peak analysis of concrete structures using a 9-node assumed strain shell element (9절점 가변형도 쉘요소를 이용한 콘크리트 구조물의 후-정점하중 해석)

  • 이상진;이홍표;서정문
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.59-66
    • /
    • 2001
  • The post-peak analysis of concrete structures is carried out using a nine-node Reissner-Mindlin(RM) shell element which is formulated by using degenerated solid concepts. In order to avoid element deficiencies inherited in the standard RM shell element, assumed strains are adopted in the present shell element. A microscopic material model is adopted to represent the inelastic characteristic of concrete material. In particular, a concrete softening model is introduced to this material model. The arc-length control method is used to trace the post-peak behaviour of concrete structures. From the numerical test of the single-edge-notched beam, the present shell element shows a reasonable agreement with experimental data.

  • PDF

Shear Strength of Externally Post-Tensioned Concrete Beams (외부 포스트텐션 콘크리트 보의 전단강도)

  • Lee, Swoo-Heon;Kang, Thomas H.K.;Shin, Kyung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.57-64
    • /
    • 2015
  • This paper shows the test results of continuous reinforced concrete beams with external post-tensioning rods. Six three-span beams were prepared and tested to fail. Three beams were designed to have flexure-dominating behavior and the others to have shear-critical behavior. In each group, one beam without external post-tensioning rods was designated as a control beam and two beams had the external post-tensioning rods of 18 mm or 22 mm diameter. External post-tensioning rods were installed within an interior span of 6000 mm. They show V-shaped configuration because two anchorages were located at the top of interior supports and a saddle pin at mid-span was installed at the bottom of the beam. Test results show that the load and shear capacities of strengthened beams were increased when compared with the control beam. Additionally, the measured shear strength was compared with the strength predicted by ACI 318-11 code equations. The detailed ACI 318-11 equation predicted the measured shear strength and failure location of the continuous beam reasonably well.

Analytical Study on Structural Behaviors of Post-Tensioned Column-Base Connections for Steel Modular Structures (철골 모듈러 구조물의 포스트텐션 기둥-바닥 접합부 거동에 대한 해석적 연구)

  • Choi, Kyung-Suk;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.427-435
    • /
    • 2020
  • Modular structures are relatively lightweight compared to reinforced-concrete or steel structures. However, it is difficult to achieve structural integrity between the columns of unit modules in a modular structure, which causes undesirable effects on the lateral force resistance capacity against wind and earthquake loads. This is more prominent in modular structures whose overall heights are greater. Hence, a post-tensioned modular structural system is proposed herein to improve the lateral force resistance capacity of a typical modular structure. A post-tensioned column-base connection, which is the main component of the proposed modular structural system, is configured with shapes and characteristics that allow inducing self-centering behaviors. Finite element analysis was then performed to investigate the hysteretic behaviors of the post-tensioned column-base connection. The analysis results show that the hysteretic behaviors are significantly affected by the initial tension forces and beam-column connection details at the base.

Crack identification in post-buckled beam-type structures

  • Moradi, Shapour;Moghadam, Peyman Jamshidi
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1233-1252
    • /
    • 2015
  • This study investigates the problem of crack detection in post-buckled beam-type structures. The beam under the axial compressive force has a crack, assumed to be open and through the width. The crack, which is modeled by a massless rotational spring, divides the beam into two segments. The crack detection is considered as an optimization problem, and the weighted sum of the squared errors between the measured and computed natural frequencies is minimized by the bees algorithm. To find the natural frequencies, the governing nonlinear equations of motion for the post-buckled state are first derived. The solution of the nonlinear differential equations of the two segments consists of static and dynamic parts. The differential quadrature method along with an arc length strategy is used to solve the static part, while the same method is utilized for the solution of the linearized dynamic part and the extraction of the natural frequencies of the cracked beam. The investigation includes several numerical as well as experimental case studies on the post-buckled simply supported and clamped-clamped beams having open cracks. The results show that several parameters such as the amount of applied compressive force and boundary conditions influences the outcome of the crack detection scheme. The identification results also show that the crack position and depth can be predicted well by the presented method.