• 제목/요약/키워드: Positron emission tomography

검색결과 596건 처리시간 0.023초

Diagnostic imaging of malignant insulinoma in a dog

  • Choi, Jihye;Keh, Seoyeon;Kim, Sungsoo;Lee, Su-Hyung;Kim, Hyejin;Choi, Heeyeon;Lim, Younji;Kim, Hyunwook;Kim, Ahyoung;Kim, Dae-Yong
    • 대한수의학회지
    • /
    • 제52권3호
    • /
    • pp.205-208
    • /
    • 2012
  • Endocrine test data from a 13-year old intact female Maltese was indicative of the presence of an insulinoma, however ultrasonography identified a pancreatic mass only after 10 months after the first admission. Following identification of both pancreatic tumor and hepatic metastasis on computed tomography (CT), surgical excision of the mass was attempted. However, total excision failed because of tumor adhesion to adjacent large vessels. The pancreatic mass was monitored over the next 25 months via ultrasonography, CT, and positron emission tomography-computed tomography (PET-CT). Histopathological and immunohistochemical data confirmed the diagnosis of insulinoma with hepatic metastasis.

Primary Diffuse Large B-Cell Lymphoma of the Seminal Vesicle: a Case Report

  • Kwag, Kyung Su;Jang, Suk Ki;Yeon, Jae Woo;Kwon, Kye-Won;Son, Jeong Hwan;Kim, Hyuk Jung
    • Investigative Magnetic Resonance Imaging
    • /
    • 제20권4호
    • /
    • pp.259-263
    • /
    • 2016
  • Primary diffuse large B-cell lymphoma of the seminal vesicle is an extremely rare disorder, with only two cases reported in the English literature. Here, we present imaging findings of a case of primary diffuse large B-cell lymphoma of the seminal vesicle. On transrectal ultrasonography, the mass presented as a 3.0-cm-sized heterogeneous, hypoechoic lesion in the right seminal vesicle. Computed tomography (CT) revealed a mass with rim-like enhancement in the right seminal vesicle. On magnetic resonance imaging (MRI), the tumor showed iso-signal intensity on T1-weighted images and heterogeneously intermediate-high signal intensity on T2-weighted images. The tumor showed rim-like and progressive enhancement with non-enhancing portion on dynamic scanning. Diffusion restriction was observed in the mass. On fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET/CT) imaging, a high standardized uptake value (maxSUV, 23.5) by the tumor was noted exclusively in the right seminal vesicle.

Current Radiopharmaceuticals for Positron Emission Tomography of Brain Tumors

  • Jung, Ji-hoon;Ahn, Byeong-Cheol
    • Brain Tumor Research and Treatment
    • /
    • 제6권2호
    • /
    • pp.47-53
    • /
    • 2018
  • Brain tumors represent a diverse spectrum of histology, biology, prognosis, and treatment options. Although MRI remains the gold standard for morphological tumor characterization, positron emission tomography (PET) can play a critical role in evaluating disease status. This article focuses on the use of PET with radiolabeled glucose and amino acid analogs to aid in the diagnosis of tumors and differentiate between recurrent tumors and radiation necrosis. The most widely used tracer is $^{18}F$-fluorodeoxyglucose (FDG). Although the intensity of FDG uptake is clearly associated with tumor grade, the exact role of FDG PET imaging remains debatable. Additionally, high uptake of FDG in normal grey matter limits its use in some low-grade tumors that may not be visualized. Because of their potential to overcome the limitation of FDG PET of brain tumors, $^{11}C$-methionine and $^{18}F$-3,4-dihydroxyphenylalanine (FDOPA) have been proposed. Low accumulation of amino acid tracers in normal brains allows the detection of low-grade gliomas and facilitates more precise tumor delineation. These amino acid tracers have higher sensitivity and specificity for detecting brain tumors and differentiating recurrent tumors from post-therapeutic changes. FDG and amino acid tracers may be complementary, and both may be required for assessment of an individual patient. Additional tracers for brain tumor imaging are currently under development. Combinations of different tracers might provide more in-depth information about tumor characteristics, and current limitations may thus be overcome in the near future. PET with various tracers including FDG, $^{11}C$-methionine, and FDOPA has improved the management of patients with brain tumors. To evaluate the exact value of PET, however, additional prospective large sample studies are needed.

Comparison of Positron Emission Tomography(PET) imaging-based initial in vivo pharmacokinetics by administration routes of [18F]FDG

  • Yiseul Choi;Jang Woo Park;Eun Sang Lee;Ok-Sun Kim;Hye Kyung Chung
    • 대한방사성의약품학회지
    • /
    • 제7권2호
    • /
    • pp.99-103
    • /
    • 2021
  • In this study, the initial in vivo pharmacokinetic changes according to the routes of drug administration were investigated using bioimaging techniques. The purpose of this study was to quantify the degree of distribution of each major organ in normal mice over time by acquiring Positron Emission Tomography/Computed Tomography images while administering routes F-18 fluorodeoxyglucose such as intravenous, intraperitoneal and per oral, a representative diagnostic radiopharmaceutical. Dynamic Positron Emission Tomography images were acquired for 90 minutes after drug administration. Radioactivity uptake was calculated for major organs using the PMOD program. In the case of intravenous administration, it was confirmed that it spread quickly and evenly to major organs. Compared to intravenous administration, intraperitoneal administration was about three times more absorbed and distributed in the liver and intestine, and it was showed that the amount excreted through the bladder was more than twice. In the case of oral administration, most stayed in the stomach, and it was showed that it spread slowly throughout the body. In comparison with intravenous administration, it was presented that the distribution of kidneys was more than 9 times and the distribution of bladder was 66% lower. Since there is a difference in the initial in vivo distribution and excretion of each administration method, we confirmed that the determination of the administration route is important for in vivo imaging evaluation of new drug candidates.

Synthesis of [18F]Fluorocholine Analogues as a Potential Imaging Agent for PET Studies

  • Yu, Kook-Hyun;Park, Jeong-Hoon;Yang, Seung-Dae
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권4호
    • /
    • pp.506-510
    • /
    • 2004
  • There have been intensive studies concerning $[^{11}F]$choline ($[^{11}F]$methyldimethyl( ${\beta}$ -hydroxyethyl) ammonium) (1) which is known as a very effective tracer in imaging various human tumors localized in brain, lung, esophagus, rectum, prostate and urinary bladder using Positron Emission Tomography (PET) and there is increasing interest in $^{18}F$ labelled choline (2) and proved to be useful to visualize prostate cancer. We have prepared six $^{18}F$ labelled alkyl choline derivatives (3a-3c, 4a-4c) from ditosylated and dibrominated alkanes in moderate yields. The six alkyl tosylate or bromate ammonium salts have been synthesized as precursors. Radiofluorination was achieved by the treatment of precursors with $^{18}F$ - in the presence of Kryptofix-2.2.2.. The labeling yields varied ranging from 7 to 25%.

Strain-promoted alkyne-azide cycloaddition for PET molecular imaging study

  • Jeong, Hyeon Jin;Kim, Dong Wook
    • 대한방사성의약품학회지
    • /
    • 제1권1호
    • /
    • pp.15-22
    • /
    • 2015
  • $^{18}F$-labeling reaction of bioactive molecule via click chemistry is widely used to produce $^{18}F$-labeled radiotracer in the field of radiopharmaceutical science and molecular imaging. In particular, bioorthogonal strain-promoted alkyne-azide cycloaddition (SPAAC) reaction has received much attention as an alternative ligation method for radiolabeling bioactive molecules such as peptides, DNA, proteins as well as nanoparticles. Moreover, SPAAC based pretargeting method could provide tumor images successfully on positron emission tomography system using nanoparticle such as mesoporous silica nanoparticles.

Synthesis of 68Ga-labeled gold nanoparticles for tumor targeted positron emission tomography imaging

  • Jeon, Jongho;Choi, Mi Hee
    • 대한방사성의약품학회지
    • /
    • 제1권1호
    • /
    • pp.46-52
    • /
    • 2015
  • Herein we present the synthesis of $^{68}Ga$-labeled gold nanoparticles for in vivo PET imaging. A novel chelator DTPA-Cys was easily prepared from diethylenetriaminepentaacetic dianhydride in high yield. The ${\alpha}_v{\beta}_3$ integrin receptor targeted gold nanoparticle probe was synthesized by using DTPA-Cys, polyethylene glycol and cRGD peptide. $^{68}Ga$ labeling of cRGD conjugated gold nanoparticle was carried out at $40^{\circ}C$ for 30 min. Observed radiochemical yield was more than 75% as determined by radio-TLC and the probe was purified by centrifugation. In vitro stability test showed that 90% of $^{68}Ga$-labeled gold nanoparticle probe was stable in FBS for 1 h. Those results demonstrated that $^{68}Ga$-labeled gold nanoparticle could be used as a potentially useful probe for specific tumor imaging.

양전자방출단층촬영을 이용한 심근혈류 및 관상동맥 혈류예비능 평가 (Evaluation of Myocardial Blood Flow and Coronary Flow Reserve Using Positron Emission Tomography)

  • 이병일;범희승
    • 대한핵의학회지
    • /
    • 제39권2호
    • /
    • pp.118-123
    • /
    • 2005
  • Positron emission tomography (PET) serves as a gold standard for noninvasive in vivo measurement of myocardial blood flow (MBF) and coronary flow reserve (CFR). CFR can be defined as the ratio of maximally vasodilated MBF over its basal flow. It is an important parameter for the evaluation of functional severity of coronary stenosis and prognositification in various diseases such as dilated cardiomyopathy. $^{13}NH_3,\;H_2^{15}O,\;^{82}Rb$ are widely used radiopharmaceuticals for measuring MBF and CFR, This review introduces imaging techniques and its clinical utility. Cardiac application or PET and PET/CT is expected to be increased in near future.