• Title/Summary/Keyword: Positioning motion

Search Result 352, Processing Time 0.025 seconds

Mask-Panel Alignment Robot System Using a Parallel Mechanism with Actuation Redundancy (여유 구동 병렬기구를 이용한 마스크-패널 얼라인 로붓 시스템)

  • Jeong, Hae-Min;Kwon, Sang-Joo;Lee, Sang-Moo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.887-893
    • /
    • 2009
  • In this paper, a mask-panel alignment robot system is considered for IT industry applications. Two kinds of solutions are suggested which are required in constructing a control system for the alignment robot with actuation redundancy. First, the kinematic solution for the 4PPR parallel positioning mechanism is formulated for an arbitrary initial posture, which relates the mask-panel misalignment in the task space and the desired actuator displacements in the joint space. Secondly, in order to increase the stiffness of the control motion and also to avoid the mechanical lock which may happen due to the redundant actuation, a new synchronous control method is proposed which has the merit of coordinating joint control motions while not losing individual joint control performance. In addition, the engineering process to develop a visual alignment robot system is described with the results of experimental setup and GUI software. Finally, the experimental results demonstrate the effectiveness of the proposed alignment system control methodology and how much beneficial it will be in real industrial applications.

A Range-Based Monte Carlo Box Algorithm for Mobile Nodes Localization in WSNs

  • Li, Dan;Wen, Xianbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3889-3903
    • /
    • 2017
  • Fast and accurate localization of randomly deployed nodes is required by many applications in wireless sensor networks (WSNs). However, mobile nodes localization in WSNs is more difficult than static nodes localization since the nodes mobility brings more data. In this paper, we propose a Range-based Monte Carlo Box (RMCB) algorithm, which builds upon the Monte Carlo Localization Boxed (MCB) algorithm to improve the localization accuracy. This algorithm utilizes Received Signal Strength Indication (RSSI) ranging technique to build a sample box and adds a preset error coefficient in sampling and filtering phase to increase the success rate of sampling and accuracy of valid samples. Moreover, simplified Particle Swarm Optimization (sPSO) algorithm is introduced to generate new samples and avoid constantly repeated sampling and filtering process. Simulation results denote that our proposed RMCB algorithm can reduce the location error by 24%, 14% and 14% on average compared to MCB, Range-based Monte Carlo Localization (RMCL) and RSSI Motion Prediction MCB (RMMCB) algorithm respectively and are suitable for high precision required positioning scenes.

Time-series Analysis of Geodetic Reference Frame Aligned to International Terrestrial Reference Frame

  • Bae, Tae-Suk;Hong, Chang-Ki;Lee, Jisun;Altamimi, Zuheir;Sillard, Patrick;Boucher, Claude
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.313-319
    • /
    • 2021
  • The national geodetic reference frame of Korea was adopted in 2003, which is referenced to ITRF (International Terrestrial Reference Frame) 2000 at the epoch of January 1, 2002. For precise positioning based on the satellites, it should be thoroughly maintained to the newest global reference frame. Other than plate tectonic motion, there are significant events or changes such as earthquakes, antenna replacement, PSD (Post-Seismic Deformation), seasonal variation etc. We processed three years of GNSS (Global Navigation Satellite System) data(60 NGII CORS stations, 51 IGS core stations) to produce daily solutions minimally constrained to ITRF. From the time series of daily solutions, the sites with unexpected discontinuity were identified to set up an event(mostly antenna replacement). The combined solution with minimum constraints was estimated along with the velocity, the offsets, and the periodic signals. The residuals show that the surrounding environment also affects the time series to a certain degree, thus it should be improved eventually. The transformation parameters to ITRF2014 were calculated with stability and consistency, which means the national geodetic reference frame is properly aligned to the global reference frame.

Identification of bridge bending frequencies through drive-by monitoring compensating vehicle pitch detrimental effect

  • Lorenzo Benedetti;Lorenzo Bernardini;Antonio Argentino;Gabriele Cazzulani;Claudio Somaschini ;Marco Belloli
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.305-321
    • /
    • 2022
  • Bridge structural health monitoring with the aim of continuously assessing structural safety and reliability represents a topic of major importance for worldwide infrastructure managers. In the last two decades, due to their potential economic and operational advantages, drive-by approaches experienced growing consideration from researcher and engineers. This work addresses two technical topics regarding indirect frequency estimation methods: bridge and vehicle dynamics overlapping, and bridge expansion joints impact. The experimental campaign was conducted on a mixed multi-span bridge located in Lombardy using a Ford Galaxy instrumented with a mesh of wireless accelerometers. The onboard time series were acquired for a number of 10 passages over the bridge,performed at a travelling speed of 30 km/h, with no limitations imposed to traffic. Exploiting an ad-hoc sensors positioning, pitch vehicle motion was compensated, allowing to estimate the first two bridge bending frequencies from PSD functions; moreover, the herein adopted approach proved to be insensitive to joints disturbance. Conclusively, a sensitivity study has been conducted to trace the relationship between estimation accuracy and number of trips considered in the analysis. Promising results were found, pointing out a clear positive correlation especially for the first bending frequency.

Implementation of Falling Accident Monitoring and Prediction System using Real-time Integrated Sensing Data

  • Bonghyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.2987-3002
    • /
    • 2023
  • In 2015, the number of senior citizens aged 65 and over in Korea was 6,662,400, accounting for 13.1% of the total population. Along with these social phenomena, risk information related to the elderly is increasing every year. In particular, a fall accident caused by a fall can cause serious injury to an elderly person, so special attention is required. Therefore, in this paper, we implemented a system that monitors fall accidents and informs them in real time to minimize damage caused by falls. To this end, beacon-based indoor location positioning was performed and biometric information based on an integrated module was collected using various sensors. In other words, a multi-functional sensor integration module was designed based on Arduino to collect and monitor user's temperature, heart rate, and motion data in real time. Finally, through the analysis and prediction of measurement signals from the integrated module, damage from fall accidents can be reduced and rapid emergency treatment is possible. Through this, it is possible to reduce the damage caused by a fall accident, and rapid emergency treatment will be possible. In addition, it is expected to lead a new paradigm of safety systems through expansion and application to socially vulnerable groups.

A Study on the Production Characteristics of Anaglyph Motion Graphic Images by Digital Camera and Color Compositing (애너그리프(Anaglyph) 3D 입체모션그래픽 제작방법에 대한 연구 : 카메라 포지셔닝과 색상합성법을 중심으로)

  • Hyun, Seung-Hoon
    • Cartoon and Animation Studies
    • /
    • s.14
    • /
    • pp.165-176
    • /
    • 2008
  • In the future there would be many kinds of digital images for many industrial markets. 3D stereoscopic images for variable fields; medical operation, film and animation, broadcasting, internet, game, or design for art and architecture. And many people to work about computer programming, and digital image making will concern about it more and more. However, these kinds works and studies are focused on the professional technical fields like 3D display or computer programming technology so far. To revitalize the market of a variable stereoscopic contents, there should build up the foundation for easy processing of the making stereoscopic images. This paper is based on stereoscopic making skills for anaglyph system. An anaglyph system has an old history about making stereoscopic images, and very simple method to produce the stereoscopic images. Particularly this study is focused on color compositing technique, and camera positioning on the compositing system. It will help optimization of the environments to create 3D motion graphic and animation contents.

  • PDF

The Proprioceptive Function of Rotator Cuff Tear Patients: Preliminary Report of Pre-operative Function (회전근개 파열 환자의 고유 수용성 감각 기능: 수술전 기능의 예비 보고)

  • Lee, Hyunil;Heo, Jaewon;Yoo, Jae Chul
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • Purpose: Proprioceptive function has been known to be important to shoulder stability. However, the function in rotator cuff tear patients is rarely investigated. The purpose of current study is to report the proprioceptive function in rotator cuff tear patients and to analyze the proprioceptive function regarding the tear size and the presence of subscapularis tear. Materials and Methods: Between 2011 and 2012, total 76 patients (male 28 and female 48) were recruited and average age was 61.7 years old (range, 38~76). Preoperatively, joint position senses in internal and external rotation were measured for proprioceptive function testing by method of active re-positioning technique. The absolute difference from set point was measured. Proprioceptive function was further analyzed according to tear size of rotator cuff, the presence of subscapularis tear, visual analogue scale of pain, shoulder functional score (American society of elbow and shoulder score), and ranges of motion in shoulder. Results: The absolute difference for external rotation was $4.9^{\circ}{\pm}2.9^{\circ}$, in normal joint and $4.9^{\circ}{\pm}3.0^{\circ}$for involved joint in rotator cuff tear patients. This difference was not significant statistically (p=0.87). The absolute difference for internal rotation was $4.0^{\circ}{\pm}2.7^{\circ}$in normal joint whereas $4.8^{\circ}{\pm}3.7^{\circ}$ for involved joint showing statistically significant difference (p=0.043). There was some trend that the proprioceptive function of internal rotation was more impaired in the bigger tear size group (more than medium tear) compared to the smaller tear size group (partial thickness and small tear, 5.0 vs. 4.0, p=0.061). The impairment of internal rotation proprioception was also accentuated in patients with subscapularis tear (4.8 vs. 4.0, p=0.065). The proprioceptive function of internal rotation was decreased when the pain visual analogue scale was increased (5.2 vs. 4.0 p=0.04), shoulder functional score was decreased (6.1 vs. 4.2, p=0.005), or range of motion in shoulder joint was restricted (5.3 vs. 3.7, p=0.041). Conclusion: The deficit of proprioceptive function was observed in rotator cuff tear patients. Proprioception for internal rotation was impaired in patients with the bigger tear size and subscapularis tear. Pain, shoulder function score, and range of motion were also shown to be related with the deficit in proprioceptive function.

  • PDF

Generation of Ionospheric Delay in Time Comparison for a Specific GEO Satellite by Using Bernese Software

  • Jeong, Kwang Seob;Lee, Young Kyu;Yang, Sung Hoon;Hwang, Sang-wook;Kim, Sanhae;Song, Kyu-Ha;Lee, Wonjin;Ko, Jae Heon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.125-133
    • /
    • 2017
  • Time comparison is necessary for the verification and synchronization of the clock. Two-way satellite time and frequency (TWSTFT) is a method for time comparison over long distances. This method includes errors such as atmospheric effects, satellite motion, and environmental conditions. Ionospheric delay is one of the significant time comparison error in case of the carrier-phase TWSTFT (TWCP). Global Ionosphere Map (GIM) from Center for Orbit Determination in Europe (CODE) is used to compare with Bernese. Thin shell model of the ionosphere is used for the calculation of the Ionosphere Pierce Point (IPP) between stations and a GEO satellite. Korea Research Institute of Standards and Science (KRISS) and Koganei (KGNI) stations are used, and the analysis is conducted at 29 January 2017. Vertical Total Electron Content (VTEC) which is generated by Bernese at the latitude and longitude of the receiver by processing a Receiver Independent Exchange (RINEX) observation file that is generated from the receiver has demonstrated adequacy by showing similar variation trends with the CODE GIM. Bernese also has showed the capability to produce high resolution IONosphere map EXchange (IONEX) data compared to the CODE GIM. At each station IPP, VTEC difference in two stations showed absolute maximum 3.3 and 2.3 Total Electron Content Unit (TECU) in Bernese and GIM, respectively. The ionospheric delay of the TWCP has showed maximum 5.69 and 2.54 ps from Bernese and CODE GIM, respectively. Bernese could correct up to 6.29 ps in ionospheric delay rather than using CODE GIM. The peak-to-peak value of the ionospheric delay for TWCP in Bernese is about 10 ps, and this has to be eliminated to get high precision TWCP results. The $10^{-16}$ level uncertainty of atomic clock corresponds to 10 ps for 1 day averaging time, so time synchronization performance needs less than 10 ps. Current time synchronization of a satellite and ground station is about 2 ns level, but the smaller required performance, like less than 1 ns, the better. In this perspective, since the ionospheric delay could exceed over 100 ps in a long baseline different from this short baseline case, the elimination of the ionospheric delay is thought to be important for more high precision time synchronization of a satellite and ground station. This paper showed detailed method how to eliminate ionospheric delay for TWCP, and a specific case is applied by using this technique. Anyone could apply this method to establish high precision TWCP capability, and it is possible to use other software such as GIPSYOASIS and GPSTk. This TWCP could be applied in the high precision atomic clocks and used in the ground stations of the future domestic satellite navigation system.

A Combination Study on the Elevation Motion Friction Compensation Parameters in Gas Spring (1) (가스 스프링 Elevation 동작 마찰력 보상 변수 조합 연구 (1))

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.657-666
    • /
    • 2017
  • In this study, factor analysis was performed to reduce the friction in the elevation motion of a stand for a 50-inchtelevision. Pipe type cross-section control was used for accurate positioning control of the piston rod. The pipe type was also compared with a labyrinth-type crosssection for the orifice. The frictional force was then reduced using gas seal lip technology. Specifications were chosen, and a volume compensation experiment was carried out using an apparatus for compensating the volume of the cylinder, which is compressed by the volume of the piston rod. Based on CAE and experimental considerations, the labyrinth-type orifice is preferred for reducing friction. For the gas seal lip technology, outer and inner diameters of ${\Phi}20$ and ${\Phi}8$ for the hollow rod were more appropriate when assuming the weight of a 50-inch television to be 30kgf. The third is that the result of total consideration in stability problem and performance of volume compensation for specification decision and volume compensation experiment is determined the final speculation of hollow rod ?8x?4 and riveting system. The last is that the labyrinth orifice is not founded that of the ${\O}0.4{\sim}0.6$ orifice both tests on 300 mm intervals.

The Development of Real Time Automatic Patient Position Correction System during the Radiation Therapy Based on CCD: A Feasibility Study (CCD기반의 방사선치료 중 실시간 자동 환자 위치보정 시스템 개발: 타당성 연구)

  • Shin, Dongho;Chung, Kwangzoo;Kim, Meyoung;Son, Jaeman;Yoon, Myonggeun;Lim, Young Kyung;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.24 no.3
    • /
    • pp.191-197
    • /
    • 2013
  • Upon radiation treatment, it is the important factor to monitor the patient's motion during radiation irradiated, since it can determine whether the treatment is successful. Thus, we have developed the system in which the patient's motion is monitored in real time and moving treatment position can be automatically corrected during radiation irradiation. We have developed the patient's position monitoring system in which the patient's position is three dimensionally identified by using two CCD cameras which are orthogonal located around the isocenter. This system uses the image pattern matching technique using a normalized cross-correlation method. We have developed the system in which trigger signal for beam on and off is generated by quantitatively analyzing the changes in a treatment position through delivery of the images taken from CCD cameras to the computer and the motor of moving couch can be controlled. This system was able to automatically correct a patient's position with the resolution of 0.5 mm or less.