• 제목/요약/키워드: Positioning Systems

검색결과 1,215건 처리시간 0.02초

차량 추적 시스템에서 차분기법을 이용한 정밀도 향상에 관한 연구 (Improvement on the Vehicle Positioning Accuracy Using Differential Method for Vehicle Tracking)

  • 장경일;이원우;길계환;김용윤;황춘식
    • 전자공학회논문지S
    • /
    • 제34S권1호
    • /
    • pp.16-25
    • /
    • 1997
  • This paper shows the development of the high accuracy vehicle positioning algorithm using the differential technique in vehicle tracking systems form the existing vehicle position which is acquired from the global positioning system (GPS). The control center receives the satellite ephemerise data and pseudorange correction from the reference station, and vehicle position from the moving vehicle. The pseudorange is calculated with the satellite position and the vehicle position, and corrected by pseudorange correction. Using this corrected pseudorange and kalman filter, more improved vehicle positioning data were obtained.

  • PDF

NC선반의 직선 사이클 평면 위치결정 정도 측정에 관한 연구 (A Study on Measurement of Linear Cycle Plane Positioning Accuracy of NC Lathe)

  • 김영석;송인석;정정표;한지희;윤원주
    • 한국공작기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.53-58
    • /
    • 2003
  • It is very important to measure linear cycle plane positioning accuracy of NC lathe as it effects all other parts of machines machined by them in industries. If the plane positioning accuracy of NC lathe is bad, the dimension accuracy and the change-ability of works will be bad in the assembly of machine parts. In this paper, computer software systems are organized to measure linear cycle plane positioning displacement of ATC(Automatic tool changer) on zx plane of NC lathe using two linear scales. And each sets of error data obtained from the test is descriptions to plots and the results of linear cycle plane positioning errors are expressed as nutriments by computer treatment.

일반적인 GPS 수신기를 위한 채널별 다중경로오차 검출 기법 (Channelwise Multipath Detection for General GPS Receivers)

  • 이형근;이장규;지규인
    • 제어로봇시스템학회논문지
    • /
    • 제8권9호
    • /
    • pp.818-826
    • /
    • 2002
  • Since multipath phenomenon frequently occurs when a Global Positioning System receiver is placed in urban area crowded with large buildings, efficient mitigation of multipath effects is necessary to resolve. In this paper, we propose a new multipath detection technique that is useful in real-time positioning with a general Global Positioning System receiver. The proposed technique is based on a channelwise multipath test statistic that efficiently indicates the degree of fluctuations induced by multipath error. The proposed multipath test statistic is operationally advantageous because it does not require any specialized hardware nor any pre-computation of receiver position, it is directly related to standard $\chi$$^2$-distributions, and it can adjust the detection resolution by increasing the number of successive measurements. Simulation and experiment results verify the performance of the proposed multipath detection technique.

무인 이동 로봇 위치추정을 위한 초음파 위성 시스템 (USAT(Ultrasonic Satellite System) for the Autonomous Mobile Robots Localization)

  • 이동활;김수용;윤강섭;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제13권10호
    • /
    • pp.956-961
    • /
    • 2007
  • We propose a new distance measurement method and local positioning system for the autonomous mobile robots localization. The distance measurement method is able to measure long-range distances with a high accuracy by using ultrasonic sensors. The time of flight of the ultrasonic waves include various noises is calculated accurately by the proposed period detecting method. The proposed local positioning system is composed of four ultrasonic transmitters and one ultrasonic receiver. The ultrasonic transmitter and receiver are separated but they are synchronized by RF (Radio frequency) signal. The proposed system using ultrasonic waves is represented as USAT(Ultrasonic Satellite System). USAT is able to estimate the position using the least square estimation. The experimental results show that the proposed local positioning system enables to estimate the absolute position precisely.

Modeling and Multivariable Control of a Novel Multi-Dimensional Levitated Stage with High Precision

  • Hu Tiejun;Kim Won-jong
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2006
  • This paper presents the modeling and multivariable feedback control of a novel high-precision multi-dimensional positioning stage. This integrated 6-degree-of-freedom. (DOF) motion stage is levitated by three aerostatic bearings and actuated by 3 three-phase synchronous permanent-magnet planar motors (SPMPMs). It can generate all 6-DOF motions with only a single moving part. With the DQ decomposition theory, this positioning stage is modeled as a multi-input multi-output (MIMO) electromechanical system with six inputs (currents) and six outputs (displacements). To achieve high-precision positioning capability, discrete-time integrator-augmented linear-quadratic-regulator (LQR) and reduced-order linearquadratic-Gaussian (LQG) control methodologies are applied. Digital multivariable controllers are designed and implemented on the positioning system, and experimental results are also presented in this paper to demonstrate the stage's dynamic performance.

잉크젯 프린터 용지 이송 장치의 정밀 위치 제어를 위한 이중 PID 제어기의 설계 (A Dual PID Controller for High-Accuracy Positioning of Ink Jet Printer Media Advance System)

  • 조영완
    • 제어로봇시스템학회논문지
    • /
    • 제10권4호
    • /
    • pp.317-324
    • /
    • 2004
  • The ink jet printer media advance system is required to be exactly driven to the target position via tracking the reference velocity profile to obtain the high quality print image. A single gain PID controller is not sufficient to fulfill the control objectives, the exact velocity tracking and the accurate positioning, at the same time. A dual PID controller and its switching strategy are presented in this paper to achieve the control objectives. The media advance system is controlled by two separate PID controllers, one of which is for velocity control, and the other is for position control. A PID controller controls the velocity of the media advance system until it reaches the predetermined switching position. When the media advance system passes the predetermined position, the controller is switched to the other PID controller which is more profitable for exact positioning. The switching position is determined by the estimated stop distance. The simulation and experimental results are presented to show the validity and effectiveness of the proposed controller.

위치 정밀도 향상을 위한 관절강성 파라미터 포함 로봇 캘리브레이션 (Robot Calibration with Joint Stiffness Parameters for the Enhanced Positioning Accuracy)

  • 강희준;신성원;노영식;서영수;임현규;김동혁
    • 제어로봇시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.406-410
    • /
    • 2008
  • This paper presents a new robot calibration algorithm with joint stiffness parameters for the enhanced positioning accuracy of industrial robot manipulators. This work is towards on-going development of an industrial robot calibration software which is able to identify both the kinematic and non-kinematic robot parameters. In this paper, the conventional kinematic calibration and its important considerations are briefly described first. Then, a new robot calibration algorithm which simultaneously identifies both the kinematic and joint stiffness parameters is presented and explained through a computer simulation with a 2 DOF manipulator. Finally, the developed algorithm is implemented to Hyundai HX165 robot and its resulting improvement of the positioning accuracy is addressed.

초음파 위치인식 시스템을 이용한 차량의 무인주행 (Unmanned Navigation of Vehicle Using the Ultrasonic Satellite System)

  • 김수용;이정민;이동활;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제13권9호
    • /
    • pp.875-882
    • /
    • 2007
  • In order for a vehicle to follow a predetermined trajectory accurately, its position must be estimated accurately and reliably. In this thesis, we propose trajectory tracking control methods for unmanned vehicle and a positioning system using ultrasonic wave. The positioning problem is an important part of control problem for unmanned navigation of a vehicle. Dead Reckoning is widely used for positioning of vehicle. However this method has problems because it accumulates estimation errors. We propose a new method to increase the accuracy of position estimation using the Ultrasonic Satellite System (USAT). It is shown that we will be able to estimate the position of vehicle precisely, in which errors are not accumulated. And proposed trajectory tracking control methods include both a new path planning method and a lateral control method for vehicle. The experimental results show that the proposed methods enables exact vehicle trajectory tracking even under various environmental factors.

시각동기 스위칭 GPS 중계기를 이용한 실내측위 시스템 (An Indoor Positioning System Using Time-Synchronized Switching GPS Repeater)

  • 임성혁;지규인
    • 제어로봇시스템학회논문지
    • /
    • 제12권8호
    • /
    • pp.789-797
    • /
    • 2006
  • A new method for the GPS repeater based indoor positioning is proposed and its feasibility is verified by experiments in previous paper. But the problems how can identify switching GPS repeater's ID and when switching will be occurred are remained. To solve the problem faced with, we propose the time synchronized switching GPS repeater and the methods of the detection of switching time and the estimation of TDOA. First, switching GPS repeater retransmits the signals synchronized on GPS time, sequentially. Always, first switching time is synchronized with 1 PPS. Second, we formulate the detection of switching time and the estimation of TDOA and propose the various methods. No method is existed absolutely superior to others in any conditions but the method is existed superior to others in specific condition. Finally, feasibility of indoor positioning using time-synchronized switching GPS repeater is evaluated through experiments in anechoic chamber and general environment with multipath.

실내 환경에서의 이동로봇의 위치추정을 위한 카메라 센서 네트워크 기반의 실내 위치 확인 시스템 (Indoor Positioning System Based on Camera Sensor Network for Mobile Robot Localization in Indoor Environments)

  • 지용훈
    • 제어로봇시스템학회논문지
    • /
    • 제22권11호
    • /
    • pp.952-959
    • /
    • 2016
  • This paper proposes a novel indoor positioning system (IPS) that uses a calibrated camera sensor network and dense 3D map information. The proposed IPS information is obtained by generating a bird's-eye image from multiple camera images; thus, our proposed IPS can provide accurate position information when objects (e.g., the mobile robot or pedestrians) are detected from multiple camera views. We evaluate the proposed IPS in a real environment with moving objects in a wireless camera sensor network. The results demonstrate that the proposed IPS can provide accurate position information for moving objects. This can improve the localization performance for mobile robot operation.