• Title/Summary/Keyword: Positioning Location

Search Result 824, Processing Time 0.028 seconds

LTE Signal Propagation Model-based Fingerprint DB Generation for Positioning in Emergency Rescue Situation

  • Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.157-167
    • /
    • 2020
  • Fingerprinting method is useful when estimating the location of a requestor based on LTE signals in an urban area. To do this, it is necessary to acquire location-based signals everywhere in the service area for fingerprint DB generation in advance. However, there may be signal uncollected area within a wide service area, which may cause a problem that the positioning accuracy of the requestor is low. In order to solve this problem, in this paper, signal propagation modeling is performed based on the obtained measurements, and based on this model, the signal information in the non-acquisition region is estimated. To this end, techniques for modeling signal propagation according to a method using measurements are proposed. The performance of the proposed techniques is verified based on the measurements obtained on a test bed selected as Seocho-gu, Seoul. As a result, it can be seen that signal propagation modeling performed based on multidivision segmented measurements has the most performance improvement.

FLEXIBLE ARM POSITIONING USING $H_\infty$ CONTROL THEORY WITH OPTIMUM SENSOR LOCATION

  • Estiko, Rijanto;Nishigaya, Shinya;Moran, Antonio;Hayase, Minoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.461-466
    • /
    • 1994
  • This paper is concerned with the positioning control of a flexible arm system using H$_{\infty}$ control theory with optimum sensor location. Firstly, by virtue of the orthogonality of the flexible modes of the flexible arm a reduced order model of the tributed parameter system(DPS) representing the arm has formulated. The dynamical coupling between the flexible arm and DC motor has been considered to formulate an motor composite model. In order to achieve precise positioning with vibration attenuation, sensors have been optimally located. Finally, a robust H$_{\infty}$ controller was designed and the performance of the positioning system has been analyzed.d.

  • PDF

Indoor Location Monitoring System Based on WPS (WPS 기반의 실내 위치 모니터링 시스템)

  • Baek, Seung-min;Park, Gun-young;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.851-853
    • /
    • 2013
  • Recently, location-based service as the developed continuously, interest in positioning technology is increasing. As the most famous indoor positioning technology, WPS is a positioning technology using WiFi, which can complement the limits of the indoor positioning to have a GPS. In this paper, to provide a system for monitoring the position of the inside of the user based on the position information that using the RSSI signal of the wireless AP based WPS technology, they grip the location information of the mobile nodes in the indoor. If using the method proposed, it is expected to be applied to various services it is possible to apply the WPS, this is because it is possible to estimate in real time the location distribution of mobile nodes in the indoor.

  • PDF

Accuracy Evaluation of IGS-RTS Corrections to Stand-Alone Positioning Based on GPS Code-Pseudorange Measurements

  • Kang, Min-Wook;Won, Jihye;Kim, Mi-So;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.2
    • /
    • pp.59-66
    • /
    • 2016
  • The International GNSS Service (IGS) provides the IGS-Real Time Service (IGS-RTS) corrections that can be used in stand-alone positioning in real time. In this study, the positioning accuracy before and after the application of the corrections to broadcast ephemeris by applying the IGS-RTS corrections at code pseudo-range based stand-alone positioning was compared with positioning result using precise ephemeris. The analysis result on IGS-RTS corrections showed that orbit error and clock error were 0.05 m and 0.5 ns compared to precise ephemeris and accuracy improved by about 8.5% compared to the broadcast ephemeris-applied result when the IGS-RTS was applied to positioning. Furthermore, regionally dispersed five observatories were selected to analyze the effect of external environments on positioning accuracy and positioning errors according to location and time were compared as well as the number of visible satellites and position dilution of precision by observatory were analyzed to verify a correlation with positioning error.

Method and Apparatus for indoor position Measurement (실내 측위의 섹터 분할 방법 및 섹터분할 장치)

  • Jeong, Seung-Hyuk;Shin, Hyun-Shik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.903-908
    • /
    • 2011
  • The purpose of this paper is to provider an indoor location measuring method, apparatus and Service available for mobile wireless network. This paper introduces positioning technology such as Basic Technology Element and QoS(Quality of Service) etc. of WPS(WiFi Positioning System) for mobile wireless network. An apparatus for sectionalizing an indoor area for indoor location measurement includes several steps. For example, a sector number input step, a sectionalization calculating step, a storing unit step etc. Also, This paper show advance Indoor positioning result.

Three-Dimensional Location Tracking System for Automatic Landing of an Unmanned Helicopter (무인 헬기 자동 착륙을 위한 3차원 위치 추적 시스템)

  • Choo, Young-Yeol;Kang, Seong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.608-614
    • /
    • 2008
  • This paper describes a location tracking system to guide landing process of an Unmanned Helicopter(UMH) exploiting MIT Cricket nodes. For automatic landing of a UMH, a precise positioning system is indispensable. However, GPS(Global Positioning System) is inadequate for tracking the three dimensional position of a UMH because of large positioning errors. The Cricket systems use Time-Difference-of-Arrival(TDoA) method with ultrasonic and RF(Radio Frequency) signals to measure distances. They operate in passive mode in that a listener attached to a moving device receives distance signals from several beacons located at fixed points on ground. Inevitably, this passive type of implementation causes large disturbances in measuring distances between beacons and the listener due to wind blow from propeller and turbulence of UMH body. To cope with this problem, we proposed active type of implementation for positioning a UMH. In this implementation, a beacon is set up at UMH body and four listeners are located at ground area at least where the UMH will land. A pair of Ultrasonic and RF signals from the beacon arrives at several listeners to calculate the position of the UMH. The distance signals among listeners are synchronized with a counter value appended to each distance signals from the beacon.

Precision Improvement of Indoor Wireless Positioning by Considering Clock Offsets and Wireless Synchronization (클럭 오프셋과 무선동기를 고려한 실내 무선측위 정밀도 향상 기법)

  • Lim, Erang;Kang, Jimyung;Lee, Soonwoo;Park, Youngjin;Lee, Woncheol;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.10
    • /
    • pp.894-900
    • /
    • 2012
  • Indoor wireless positioning system uses ranging information of beacons in order to precisely estimate a tag location. To estimate distance between each beacons and tag, the system calculates arrival time of a tag pulse with clock of each beacon including independent clock offset. This clock offset seriously affects the performance of ranging and positioning. We propose in this paper a clock offset compensation method to solve this problem. To verify the performance of the proposed method, we simulated location estimation with random clock offset between -1,000ppm and 1,000ppm, and the result shows that the proposed scheme effectively solves the clock offset problem.

Closely Coupled Positioning Technique in Urban Environments (도심환경에서의 밀결합 측위 기법)

  • Hwang, Yu Min;Oh, Ju Young;Kim, Yoon Hyun;Kim, Jin Young;Kim, Ha Sung;Jee, Gyu-In
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.104-109
    • /
    • 2012
  • Currently, GPS(Global Positioning System) is used to find user location information. However, in some cases, especially in urban environments, we receive unreliable location information deu to multipath fading. In order to resolve this problem, we propose a closely coupled positioning technique where GPS signal is combined with QZSS signal. Also we proposed and analyze a combining algorithm of GNSS and Wi-Fi signals to get closely coupled location information by referring AP information. Finally, this paper proposes a combined GPS/QZSS/Wi-Fi navigation algorithm to improve navigation performance, and it is verified by testing of car deriving according to availability and accuracy standard.

A Model Stacking Algorithm for Indoor Positioning System using WiFi Fingerprinting

  • JinQuan Wang;YiJun Wang;GuangWen Liu;GuiFen Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1200-1215
    • /
    • 2023
  • With the development of IoT and artificial intelligence, location-based services are getting more and more attention. For solving the current problem that indoor positioning error is large and generalization is poor, this paper proposes a Model Stacking Algorithm for Indoor Positioning System using WiFi fingerprinting. Firstly, we adopt a model stacking method based on Bayesian optimization to predict the location of indoor targets to improve indoor localization accuracy and model generalization. Secondly, Taking the predicted position based on model stacking as the observation value of particle filter, collaborative particle filter localization based on model stacking algorithm is realized. The experimental results show that the algorithm can control the position error within 2m, which is superior to KNN, GBDT, Xgboost, LightGBM, RF. The location accuracy of the fusion particle filter algorithm is improved by 31%, and the predicted trajectory is close to the real trajectory. The algorithm can also adapt to the application scenarios with fewer wireless access points.

Clustering Method for Classifying Signal Regions Based on Wi-Fi Fingerprint (Wi-Fi 핑거프린트 기반 신호 영역 구분을 위한 클러스터링 방법)

  • Yoon, Chang-Pyo;Yun, Dai Yeol;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.456-457
    • /
    • 2021
  • Recently, in order to more accurately provide indoor location-based services, technologies using Wi-Fi fingerprints and deep learning are being studied. Among the deep learning models, an RNN model that can store information from the past can store continuous movements in indoor positioning, thereby reducing positioning errors. When using an RNN model for indoor positioning, the collected training data must be continuous sequential data. However, the Wi-Fi fingerprint data collected to determine specific location information cannot be used as training data for an RNN model because only RSSI for a specific location is recorded. This paper proposes a region clustering technique for sequential input data generation of RNN models based on Wi-Fi fingerprint data.

  • PDF