• Title/Summary/Keyword: Positioning Control

Search Result 1,155, Processing Time 0.026 seconds

Precise position control of piezoelectric actuators considering input frequency variance (입력주파수 변화특성을 고려한 압전구동기의 정밀위치제어)

  • 송재욱;김호상;이효정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1052-1055
    • /
    • 1996
  • Piezoelectric actuator is widely used in precision positioning applications due to its excellent positioning resolution. However, serious hysteresis nonlinearity of the actuator deteriorates its precise positioning capability. Evenworse, its hysteresis nonlinearity changes as the actuator input frequency varies. In this study, a simple feedforward scheme is proposed and tested through experiments for precision position control when the variance of the system input frequency is significant.

  • PDF

Improved IEEE 802.11 RSSI Attenuation Log Model by Weighted Fitting Method (가중치 적합 기법을 이용한 개선된 IEEE 802.11 RSSI 감쇠 로그 모델)

  • Shin, Seokhun;Park, Joon Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.70-75
    • /
    • 2015
  • With the development of communication technologies and smartphone, requirements of positioning accuracy for LBS (Location Based Service) are becoming increasingly important. LBS is a service which offers the information or entertainment based on a location to users. Therefore, positioning is very important for LBS. Among many positioning methods, IEEE 802.11 WLAN positioning measures the distance using the RSSI (Received Signal Strength Indicator) attenuation log model. Thus in order to enhance positioning, we modify the IEEE 802.11 RSSI attenuation log model by adaptive weighting method. In this paper, we propose improved IEEE 802.11 RSSI attenuation log model for enhanced indoor positioning.

A Feasibility Study on Car Positioning system Using RFID (차량용 측위 시스템에 RFID 적용 가능성 연구)

  • Yoo Young-Min;Lee Chae-Heun;Park Joon-Goo;Park Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.975-981
    • /
    • 2006
  • This paper shows a feasibility analysis results on RFID for car positioning system. Usually, a car navigation is mainly based on GPS combined with map-matching. However, in the case of poor visibility of satellites, GPS can not supply accurate position information continuously. In recent years, RFID has been considered to be one of key technologies in positioning and localization area. But its application and research results in the area of vehicular positioning are not popular. RFID system consists of tag, reader, antenna and software such as drivers and middleware. The main function of RFID system in a vehicular positioning is to retrieve ID recorded position information from tags which set on the center of road. We propose a positioning method for vehicles using RFID and we present some indoor and outdoor experiment results to show that the proposed method is available in vehicle operational environments.

An Efficient Positioning Algorithm using Ultrasound and RF

  • Kim, Seung-Beom;Park, Chan-Sik;Kang, Dong-Youn;Yun, Hee-Hak;Ahn, Bierng-Chearl;Cha, Eun-Jong;Lee, Sang-Jeong
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.544-550
    • /
    • 2008
  • In this paper, an efficient positioning algorithm is proposed for a local positioning system using ultrasound and RF in WSN. The proposed positioning algorithm is the modified Savarese method where measurement noise characteristics are included as a weighting. Furthermore the ill-conditioned and the singularity problem occurred when all beacons are installed at the same height are removed. And the method is applicable to 2D positioning with 2 beacons only. The experiments with implemented system show the accurate seamless positioning less than 2cm error both static and dynamic experiments while the original Savarese method can not provide positions.

Computer Simulation and Control performance evaluation of Ultra Precision Positioning Apparatus using Piezo Actuator (Piezo Actuator를 이용한 초정밀 위치결정기구의 Computer Simulation 및 제어 성능평가)

  • 김재열;김영석;곽이구;한재호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.118-122
    • /
    • 2000
  • Recently, High accuracy and precision are required in various industrial field especially, semiconductor manufacturing apparatus, Ultra precision positioning apparatus, Information field and so on. Positioning technology is a very important one among them. For composition of this technology, the development of system with high speed and high resolution is needed. At start point and end position vibration must be repressed on this system for composition of position control. This vibration is arisen nose, is increased setting time, is reduced accuracy. Especially, repressed for the lead with high speed. The small actuator with high speed and high resolution is need to repression against this residual vibration. This actuator is, for example, piezo actuator, piezoelectric material that converting from electronic signal to mechanical force is adequate material, beacause of control of control to position and force. In this study, piezo electric material is used to actuator, ultra precision positioning apparatus with stage of hinge structure is designed, simulation is performed, control performance is tested by producing apparatus. For easy usage and stability in industrial field, we perform to simulation and to position control test by digital PID controller.

  • PDF

Position control of the frictionless positioning device suspended by cone-shaped active magnetic bearings (원추형 자기 베어링 지지 무마찰 구동장치의 위치제어)

  • Jeong, Ho-Seop;Lee, Chong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.181-187
    • /
    • 1996
  • A frictionless positioning device using cone-shaped active magnetic bearings(AMBs) is developed, which is driven by a brushless DC motor equipped with resolver. The cone-shaped AMB feature that the structure is simple and yet the five d.o.f. rotor motion is controlled by four magnet pairs. A linearized dynamic model, which accounts for the relationship between input voltage and output current in the cone-shaped magnet, is developed and the azimuth motion of the frictionless positioning device is modeled as the second order system. The feedback controller is designed by using linear quadratic regulator with integral action optimal control law so that the cone-shaped AMB system is stabilized and the frictionless positioning device gets the zero steady state. It is observed that the linearized dynamic model is adequate and the frictionless positioning device can achieve the tracking accuracy within the sensor resolution.

  • PDF

Dynamic Modeling and Input Shaping Control of a Positioning Stage (위치결정 스테이지에 대한 동적 모델링과 입력성형 제어)

  • Park, S.W.;Hong, S.W.;Choi, H.S.;Jang, J.W.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.83-89
    • /
    • 2008
  • This paper presents the dynamic analysis and input shaping control of a positioning stage. Vibration characteristics of the positioning stage are affected not only by the structural dynamics but also by the servo actuators that consist of the mechanism; driving motor and controller. This paper proposes an integrated dynamic model to accommodate both the structural dynamics and the servo actuators. Theoretical modal analysis with a commercial finite element code is carried out to investigate the dynamic characteristics of the experimental positioning stage. Experiments are performed to validate the theoretical modal analysis and estimate the equivalent stiffness due to the servo actuators. This paper deals with an input shaping scheme to suppress vibration of the positioning stage. Input shapers are systematically implemented for the positioning stage in consideration of its dynamics. The effects of servo control gain are also investigated. The experiments show that input shaping effectively removes residual vibrations and then improves the performance of positioning stage.

Improved performance of a linear pulse motor with repetitive positioning control

  • Sawaki, Jun;Matsuse, Kouki;Yamamoto, Shu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.389-392
    • /
    • 1996
  • We propose a method to improve repeatability positioning precision of a linear pulse motor. By using this method the systematic error which may make the precision worse can be suppressed easily. And also we show that Power OP-Amp drive system enables the accidental error to be suppressed in comparison with PWM control drive system using IGBT inverter. As a result of the suppression of systematic and accidental error, improved performance of a linear pulse motor with repetitive positioning control is shown by experimental results.

  • PDF

Simultaneous Positioning and Vibration Control of Chip Mounter with Structural Flexibility (칩마운터 구조물의 유연성을 고려한 위치와 진동 동시 제어)

  • Kang, Min Sig
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.53-59
    • /
    • 2013
  • Chip mounter which is used to pick chips from the pre-specified position and place them on the target location of PCB is an essential device in semiconductor and LCD industries. Quick and high precision positioning is the key technology needed to increase productivity of chip mounters. As increasing acceleration and deceleration of placing motion, structural vibration induced from inertial reactive force and flexibility of mounter structure becomes a serious problem degrading positioning accuracy. Motivated from these, this paper proposed a new control design algorithm which combines a mounter structure acceleration feedforward compensation and an extended sliding mode control for fine positioning and suppression of structural vibration, simultaneously. The feasibility of the proposed control design was verified along with some simulation results.

Control performance evaluation of ultra precision servo apparatus(II) (초정밀서보기구의 제어성능 평가(II))

  • 김재열;김영석;곽이구;마상동;한재호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.617-620
    • /
    • 2000
  • Recently, High accuracy and precision are required in various industrial field especially, semiconductor manufacturing apparatus, Ultra precision positioning apparatus, Information field and so on. Positioning technology is a very important one among them. Is such technology has been rapidly developed, this field needs the positioning accuracy as high as submicron. It is expected that the accuracy of 10nm and 1nm is required in precision work and ultra precision work field, respectively by the beginning of 2000s. High speed and low vibration are also needed. This work deals with the design method and control system of Ultra precision positioning apparatus. We will examine the control performance and stability before manufacturing the real apparatus by using MATLAB SIMULINK based or pre-designed controller and system modeling.

  • PDF