• Title/Summary/Keyword: Position-Based Dynamics

Search Result 229, Processing Time 0.028 seconds

Load Position and Residual Vibration Control of an Offshore Crane System Based on Input-Output Linearization Theory

  • Le, Nhat-Binh;Lee, Kwon-Soon;Kim, Young-Bok
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.337-344
    • /
    • 2017
  • In the offshore crane system, the requirements on the operating safety are extremely high due to many external factors. Rope extension is one of the factors producing vertical vibration of load. In this study, the load is carried by the motor-winch actuator control and the rope is modeled as a mass-damper-spring system. To control the load position and suppress the vertical vibration of the load, a control system based on input-output linearization method is proposed. By the simulation and experiment results with pilot crane model, the effectiveness of proposed control method is evaluated and verified.

Vision Based Estimation of 3-D Position of Target for Target Following Guidance/Control of UAV (무인 항공기의 목표물 추적을 위한 영상 기반 목표물 위치 추정)

  • Kim, Jong-Hun;Lee, Dae-Woo;Cho, Kyeum-Rae;Jo, Seon-Yeong;Kim, Jung-Ho;Han, Dong-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1205-1211
    • /
    • 2008
  • This paper describes methods to estimate 3-D position of target with respect to reference frame through monocular image from unmanned aerial vehicle (UAV). 3-D position of target is used as information for surveillance, recognition and attack. In this paper. 3-D position of target is estimated to make guidance and control law, which can follow target, user interested. It is necessary that position of target is measured in image to solve 3-D position of target. In this paper, kalman filter is used to track and output position of target in image. Estimation of target's 3-D position is possible using result of image tracking and information of UAV and camera. To estimate this, two algorithms are used. One is methode from arithmetic derivation of dynamics between UAV, carmer, and target. The other is LPV (Linear Parametric Varying). These methods have been run on simulation, and compared in this paper.

Position Control of a Moving Table Using ER Brake and ER Clutch (ER 브레이크와 클러치를 이용한 이송 테이블의 위치 제어)

  • 김승래;최승복;정재천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.225-229
    • /
    • 1996
  • This paper presents an active position control of a moving table utilizing ER(electro-rheological) brake and ER clutch. A transformer oil-based ER fluid is composed and its Bingham properties are evaluated with respect to electric fields. The dynamics of the actuators : ER brake and ER clutch, are identified through experiments, and subsequently the governing equation of motion of the moving table system is formulated from the governing equation, a sliding mode controller is designed to achieve an accurate position control. Both simulation and experimental results and presented in order to demonstrate the effectiveness of the proposed control methodology.

  • PDF

A study on the hybrid position/force control of two cooperating arms with asymmetric kinematic structures (비대칭 구조를 갖는 두 협조 로봇의 하이브리드 위치/힘 제어에 관한 연구)

  • 여희주;서일홍;홍석규;김창호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.743-746
    • /
    • 1996
  • A hybrid control scheme to regulate the force and position by dual arms is proposed, where two arms are treated as one arm in a kinematic viewpoint. Our approach is different from other hybrid control approaches which consider robot dynamics, in the sense that we employ a purely kinematic based approach for hybrid control, with regard to the nature of position-controlled industrial robots. The proposed scheme is applied to sawing task. In the sawing task, the trajectory of the saw grasped by dual arms is planned in an offline fashion. When the trajectory of the saw is planned to follow a line in a horizontal plane, 3 position parameters are to be controlled(i.e, two translational positions and one rotational position). And a certain level of contact force has to be controlled along the vertical direction(i.e., minus z-direction) not to loose the contact with the object to be sawn. Typical feature of sawing task is that the contact position where the force control is to be performed is continuously changing. Therefore, the kinematic mapping between the force controlled position and the joint actuators has to be updated continuously. The effectiveness of the proposed control scheme is experimentally demonstrated. The proposed hybrid control scheme can be applied to arbitrary dual arm systems, regardless of their kinematic structure and the number of actuated joints.

  • PDF

Inverse Dynamics for the Tip Position Control of the Transiational Motion Flexible Arm (병진 운동 탄성암의 선단 위치제어를 위한 역동역학)

  • 방두열;이성철;장남정이;저강광
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.155-159
    • /
    • 1991
  • This paper is a study on the Inverse dynamics of a one-1ink flexible robot arm which is control led by the transiational base motion. The system is composed of the flexible arm, the mobil stage, a DC servomotor, and a computer. The arm base is shifted so that the tip follows a desired path function. The tip Rotten is measured by the laser displacement sensor. The governing equations are based on the Bernoullie-Euler beam theory and solved by applying the Laplace transform method and then the numerical inversion method to the resulted equations. Tip responses obtained both theoretically and experimentally are in good agreement with the desired trajectory, which shows that the scheme of inverse dynamics is effective for the open-loop endpoint positioning of the flexible am driven by the translation stage.

  • PDF

Biped Robot Control for Stable Walking (바이패드 로봇의 안정적인 거동을 위한 제어)

  • 김경대;박종형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.311-314
    • /
    • 1995
  • Biped locomotion can be simply modeled as a linear inverted pendulum mode. This model considers only the CG (center of gravity) of the entire system. But in real biped robot systems, the free-leg motion dynamics is not negligible. So if its dynamics is not considered in designing the reference CG motion, it is badly influence to the ZMP(zero moment point) position of the biped robot walking in the sagittal plane. Therefore, we modeled the biped locomotion similar to the linear inverted pendulum mode but considered the predetermined free-leg dynamics. To verify that the proposed biped locomotion is more stable than the linear inverted pendulum mode, we constructed a biped robot simulator and designed a serco controller to track both the reference motion of the free leg and the reference motion of CG of the biped robot using the computed torque control low. And through simulations, we verified that the proposed walking is better in stability than the one based on the linear inverted pendulum mode.

  • PDF

A stochastic model based tracking control scheme for flexible robot manipulators

  • Lee, Kumjung;Nam, kwanghee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.152-155
    • /
    • 1994
  • The presence of joint elasticity or the arm flexibility causes low damped oscillatory position error along a desired trajectory. We utilize a stochastic model for describing the fast dynamics and the approximation error. A second order shaping filter is synthesized such that its spectrum matches that of the fast dynamics. Augmenting the state vector of slow part with that of shaping filter, we obtain a nonlinear dynamics to which a Gaussian white noise is injected. This modeling approach leads us to the design of an extended Kalman filter(KEF) and a linear quadratic Gaussian(LQG) control scheme. We present the simulation results of this control method. The simulation results show us that our Kalman filtering approach is one of prospective methods in controlling the flexible arms.

  • PDF

Adaptive Sliding Mode Control based on Feedback Linearization for Quadrotor with Ground Effect

  • Kim, Young-Min;Baek, Woon-Bo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.101-110
    • /
    • 2018
  • This paper introduces feedback linearization (FL) based adaptive sliding mode control (ASMC) effective against ground effects of the quadrotor UAV. The proposed control has the capability of estimation and effective rejection of those effects by adaptive mechanism, which resulting stable attitude and positioning of the quadrotor. As output variables of quadrotor, x-y-z position and yaw angle are chosen. Dynamic extension of the quadrotor dynamics is obtained for terms of roll and pitch control input to be appeared explicitly in x-y-z dynamics, and then linear feedback control including a ground effect is designed. A sliding mode control (SMC) is designed with a class of FL including higher derivative terms, sliding surfaces for which is designed as a class of integral type of resulting closed loop dynamics. The asymptotic stability of the overall system was assured, based on Lyapunov stability methods. It was evaluated through some simulation that attitude control capability is stable under excessive estimation error for unknown ground effect and initial attitude of roll, pitch, and yaw angle of $30^{\circ}$ in all. Effectiveness of the proposed method was shown for quadrotor system with ground effects.

3D-QSAR, Docking and Molecular Dynamics Simulation Study of C-Glycosylflavones as GSK-3β Inhibitors

  • Ghosh, Suparna;Keretsu, Seketoulie;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.13 no.4
    • /
    • pp.170-180
    • /
    • 2020
  • Abnormal regulation, hyperphosphorylation, and aggregation of the tau protein are the hallmark of several types of dementia, including Alzheimer's Disease. Increased activity of Glycogen Synthase Kinase-3β (GSK-3β) in the Central Nervous System (CNS), increased the tau hyperphosphorylation and caused the neurofibrillary tangles (NFTs) formation in the brain cells. Over the last two decades, numerous adenosine triphosphate (ATP) competitive inhibitors have been discovered that show inhibitory activity against GSK-3β. But these compounds exhibited off-target effects which motivated researchers to find new GSK-3β inhibitors. In the present study, we have collected the dataset of 31 C-Glycosylflavones derivatives that showed inhibitory activity against GSK-3β. Among the dataset, the most active compound was docked with the GSK-3β and molecular dynamics (MD) simulation was performed for 50 ns. Based on the 50 ns MD pose of the most active compound, the other dataset compounds were sketched, minimized, and aligned. The 3D-QSAR based Comparative Molecular Field Analysis (CoMFA) model was developed, which showed a reasonable value of q2=0.664 and r2=0.920. The contour maps generated based on the CoMFA model elaborated on the favorable substitutions at the R2 position. This study could assist in the future development of new GSK-3β inhibitors.

Speed Control of PIG Flow in Natural Gas Pipeline (천연가스배관 내 피그흐름의 속도제어)

  • Nguyen, Tan Tien;Kim, Dong-Kyu;Rho, Yong-Woo;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.253-258
    • /
    • 2001
  • This paper introduces a simple nonlinear adaptive control method for pipeline inspection gauge (PIG) flow in natural gas pipeline. The dynamic behavior of the PIG depends on the different pressure across its body and the bypass flow through it. The system dynamics includes: dynamics of driving gas flow behind the PIG, dynamics of expelled gas in front of the PIG, and dynamics of the PIG. The method of characteristics (MOC) and Runger-Kuta method are used to solve the dynamics of flow. The PIG velocity is controlled through the amount of bypass flow across its body. A simple nonlinear adaptive controller based on the backstepping method is introduced. To derive the controller, three system parameters should be measured: the PIG position, its velocity and the velocity of bypass flow across the PIG body. The simulation has been done with a pipeline segment in the KOGAS low pressure system, Ueijungboo-Sangye line to verify the effectiveness of the proposed controller. Three cases of interest are considered: the PIG starts to move at its launcher, the PIG arrives at its receiver and the PIG restarts after stopping in the pipeline by obstruction. The simulation results show that the proposed nonlinear adaptive controller attained good performance and can be used for controlling the PIG velocity.

  • PDF