• Title/Summary/Keyword: Position sensor

Search Result 2,297, Processing Time 0.029 seconds

Towards 3D Modeling of Buildings using Mobile Augmented Reality and Aerial Photographs (모바일 증강 현실 및 항공사진을 이용한 건물의 3차원 모델링)

  • Kim, Se-Hwan;Ventura, Jonathan;Chang, Jae-Sik;Lee, Tae-Hee;Hollerer, Tobias
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.84-91
    • /
    • 2009
  • This paper presents an online partial 3D modeling methodology that uses a mobile augmented reality system and aerial photographs, and a tracking methodology that compares the 3D model with a video image. Instead of relying on models which are created in advance, the system generates a 3D model for a real building on the fly by combining frontal and aerial views. A user's initial pose is estimated using an aerial photograph, which is retrieved from a database according to the user's GPS coordinates, and an inertial sensor which measures pitch. We detect edges of the rooftop based on Graph cut, and find edges and a corner of the bottom by minimizing the proposed cost function. To track the user's position and orientation in real-time, feature-based tracking is carried out based on salient points on the edges and the sides of a building the user is keeping in view. We implemented camera pose estimators using both a least squares estimator and an unscented Kalman filter (UKF). We evaluated the speed and accuracy of both approaches, and we demonstrated the usefulness of our computations as important building blocks for an Anywhere Augmentation scenario.

Occlusal Analysis in the Policemen with Temporomandibular Disorders Using T-scan II System (경찰 종사자의 측두하악장애환자에서 T-scan II System을 이용한 교합분석)

  • Lim, Hyun-Dae;Jung, Seung-Ah;Lee, You-Mee
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.4
    • /
    • pp.365-373
    • /
    • 2006
  • This study suggested correction of excessive mouth opening or maximum occlusal contact to analyse occlusal contact time, occlusal contact number and force through evaluation of occlusal pattern in policemen with temporomandibular disorders. The community of policemen influence on temporomandibular disorder's development and progress due to other condition of mouth opening and maximal occlusal contact. Repeated training or changes of usual life style may cause imbalance of stomatognathic system including the masticatory muscle, then develop or aggravate pain of temporomandibular joints and associated structures. This study uses T-scan II system(Tekscan Co., USA) for evaluation on occlusal pattern may influence temporomandibular disorders, and then the subjects take a sensor at 20 mm opening for maximal occlusal contact force. The policemen with temporomandibualr disorders get more long time on maximum contact timing, more short on end contact timing, and more force on end contact force than general society's. So they get closure of mouth with more short time and more force, then transfer remaining load to temporomandibular joint. There are no statistically significances between affected side and occlusal pattern of occlusal contact time and force. There are Left -right dental arch imbalances seems on Rt. dental arch if affected side is right and Lt. dental arch if affected side is left. In above results, It's worth due consideration that policemen with temporomandibular disorders get more smooth mandibualr movement and less force on maximal occlusal contact position.

A Study on the Phobia Treatment Using 3D Virtual Reality System (3D 가상환경시스템 이용한 공포증 치료에 대한 연구)

  • Paek Seung-Eun
    • The Journal of Information Technology
    • /
    • v.5 no.4
    • /
    • pp.45-55
    • /
    • 2002
  • Virtual Reality(VR) is a new technology which makes humans communicate with computer. It allows the user to see, hear, feel and interact in a three-dimensional virtual world created graphically. In this paper, we introduced VR into psychotherapy area and developed VR system for the exposure therapy of acrophobia. Acrophobia is an abnormal fear of heights. Medications or cognitive-behavior methods have been mainly used as a treatment. Lately the virtual reality technology has been applied to that kind of anxiety disorders. A virtual environment provides patient with stimuli which arouses phobia, and exposing to that environment makes him having ability to over come the fear. In this study, the elevator stimulator that composed with a position sensor, head mount display, and audio system, is suggested. To illustrate the physiological difference between a person who has a feel of phobia and without phobia, heart rate was measured during experiment. And also measured a person's HR after the virtual reality training. In this study, we demonstrated the subjective effectiveness of virtual reality psychotherapy through the clinical experiment.

  • PDF

Introduction of Dental X-ray Imaging with New Concept - intra Oral x-ray Tube (신개념 치과용 X-선 영상장치 소개 - 강내형 X-선 튜브)

  • Cho, Sung-Ho;Kim, Dong-Young;Baek, Kwang-Woo;Lee, Re-Na
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.94-101
    • /
    • 2011
  • Various kinds of medical imaging devices have been studied to develop periapical radiography. However, there are some problems such as high x-ray exposure rate and pains for patients because of the problems caused by intra-oral sensor based radiography system. In this study, a new concept of periapical radiography, intra oral X-ray tube and detector system, is introduced to solve these problems. This system is made up of miniature X-ray tube based on subminiature thermal electron or cold electron, CMOS based detector, and a body including automatic position and system control devices. In order to confirm the possibility of proposed new concept to periapical radiography, miniature x-ray tube from XOFT corporation is used to develop new x-ray system, and the performance evaluation of this system is performed according to collimator. Also, dental images are compared after acquiring both images from existing system versus new concept of system. As a result, new concept of system showed excellent image. Thus, it is considered that new concept of system will have a significant effect on medical imaging technology.

Study on Design of Advanced Smart Postural Change Device for Supine Posture Control (와상체위제어를 위한 스마트 고기능 자세변환기의 설계에 관한 연구)

  • Park, Seung Hwan;Jung, Jin Taek;Sim, Woo Jung;Kim, Yung Sear
    • 재활복지
    • /
    • v.18 no.4
    • /
    • pp.221-235
    • /
    • 2014
  • Recently, the frequency of stroke disease is increased due to the rapid aging population, and is contributed to the major occurrence factors of the posteriori acquired disability. This study is about an postural change device for the control of supine posture which is an assisted equipment using in daily rehabilitation process for overcoming the disability by the aftereffects of the stoke disease. In this paper, the existing domestic and Japan postural appliances is examined and its comparison and categorization is performed according to its functions and purposes. Here, in order to control the supine posture state, the design method for advanced multi functional system is proposed, which is devised to have an unified mattress control operations of combining the bedsore prevention tube with the supine posture tilting tube. And also, in addition of an smart function, it is designed to enable to perform an RF functions such as the monitoring of the present device state, the alteration of the basic position and the control of alternative floating and supine posture. This system control hardware consists of three main parts : the sensor detection part, the motor driving /control part, and the system control part for bluetooth communication. In results, we confirmed that the system designed by this research is possible to make it practical as an advanced smart postural change device combined by IoT technology in the application field of the recent IT technology.

Development of Robot Platform for Autonomous Underwater Intervention (수중 자율작업용 로봇 플랫폼 개발)

  • Yeu, Taekyeong;Choi, Hyun Taek;Lee, Yoongeon;Chae, Junbo;Lee, Yeongjun;Kim, Seong Soon;Park, Sanghyun;Lee, Tae Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.168-177
    • /
    • 2019
  • KRISO (Korea Research Institute of Ship & Ocean Engineering) started a project to develop the core algorithms for autonomous intervention using an underwater robot in 2017. This paper introduces the development of the robot platform for the core algorithms, which is an ROV (Remotely Operated Vehicle) type with one 7-function manipulator. Before the detailed design of the robot platform, the 7E-MINI arm of the ECA Group was selected as the manipulator. It is an electrical type, with a weight of 51 kg in air (30 kg in water) and a full reach of 1.4 m. To design a platform with a small size and light weight to fit in a water tank, the medium-size manipulator was placed on the center of platform, and the structural analysis of the body frame was conducted by ABAQUS. The robot had an IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and a depth sensor for measuring the underwater position and attitude. To control the robot motion, eight thrusters were installed, four for vertical and the rest for horizontal motion. The operation system was composed of an on-board control station and operation S/W. The former included devices such as a 300 VDC power supplier, Fiber-Optic (F/O) to Ethernet communication converter, and main control PC. The latter was developed using an ROS (Robot Operation System) based on Linux. The basic performance of the manufactured robot platform was verified through a water tank test, where the robot was manually operated using a joystick, and the robot motion and attitude variation that resulted from the manipulator movement were closely observed.

Improving Precision of the Exterior Orientation and the Pixel Position of a Multispectral Camera onboard a Drone through the Simultaneous Utilization of a High Resolution Camera (고해상도 카메라와의 동시 운영을 통한 드론 다분광카메라의 외부표정 및 영상 위치 정밀도 개선 연구)

  • Baek, Seungil;Byun, Minsu;Kim, Wonkook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.541-548
    • /
    • 2021
  • Recently, multispectral cameras are being actively utilized in various application fields such as agriculture, forest management, coastal environment monitoring, and so on, particularly onboard UAV's. Resultant multispectral images are typically georeferenced primarily based on the onboard GPS (Global Positioning System) and IMU (Inertial Measurement Unit)or accurate positional information of the pixels, or could be integrated with ground control points that are directly measured on the ground. However, due to the high cost of establishing GCP's prior to the georeferencing or for inaccessible areas, it is often required to derive the positions without such reference information. This study aims to provide a means to improve the georeferencing performance of a multispectral camera images without involving such ground reference points, but instead with the simultaneously onboard high resolution RGB camera. The exterior orientation parameters of the drone camera are first estimated through the bundle adjustment, and compared with the reference values derived with the GCP's. The results showed that the incorporation of the images from a high resolution RGB camera greatly improved both the exterior orientation estimation and the georeferencing of the multispectral camera. Additionally, an evaluation performed on the direction estimation from a ground point to the sensor showed that inclusion of RGB images can reduce the angle errors more by one order.

Individual Ortho-rectification of Coast Guard Aerial Images for Oil Spill Monitoring (유출유 모니터링을 위한 해경 항공 영상의 개별정사보정)

  • Oh, Youngon;Bui, An Ngoc;Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1479-1488
    • /
    • 2022
  • Accidents in which oil spills occur intermittently in the ocean due to ship collisions and sinkings. In order to prepare prompt countermeasures when such an accident occurs, it is necessary to accurately identify the current status of spilled oil. To this end, the Coast Guard patrols the target area with a fixed-wing airplane or helicopter and checks it with the naked eye or video, but it was difficult to determine the area contaminated by the spilled oil and its exact location on the map. Accordingly, this study develops a technology for direct ortho-rectification by automatically geo-referencing aerial images collected by the Coast Guard without individual ground reference points to identify the current status of spilled oil. First, meta information required for georeferencing is extracted from a visualized screen of sensor information such as video by optical character recognition (OCR). Based on the extracted information, the external orientation parameters of the image are determined. Images are individually orthorectified using the determined the external orientation parameters. The accuracy of individual orthoimages generated through this method was evaluated to be about tens of meters up to 100 m. The accuracy level was reasonably acceptable considering the inherent errors of the position and attitude sensors, the inaccuracies in the internal orientation parameters such as camera focal length, without using no ground control points. It is judged to be an appropriate level for identifying the current status of spilled oil contaminated areas in the sea. In the future, if real-time transmission of images captured during flight becomes possible, individual orthoimages can be generated in real time through the proposed individual orthorectification technology. Based on this, it can be effectively used to quickly identify the current status of spilled oil contamination and establish countermeasures.

Optimization of Sensor Location for Real-Time Damage assessment of Cable in the cable-Stayed Bridge (사장교 케이블의 실시간 손상평가를 위한 센서 배치의 최적화)

  • Geon-Hyeok Bang;Gwang-Hee Heo;Jae-Hoon Lee;Yu-Jae Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.172-181
    • /
    • 2023
  • In this study, real-time damage evaluation of cable-stayed bridges was conducted for cable damage. ICP type acceleration sensors were used for real-time damage assessment of cable-stayed bridges, and Kinetic Energy Optimization Techniques (KEOT) were used to select the optimal conditions for the location and quantity of the sensors. When a structure vibrates by an external force, KEOT measures the value of the maximum deformation energy to determine the optimal measurement position and the quantity of sensors. The damage conditions in this study were limited to cable breakage, and cable damage was caused by dividing the cable-stayed bridge into four sections. Through FE structural analysis, a virtual model similar to the actual model was created in the real-time damage evaluation method of cable. After applying random oscillation waves to the generated virtual model and model structure, cable damage to the model structure was caused. The two data were compared by defining the response output from the virtual model as a corruption-free response and the response measured from the real model as a corruption-free data. The degree of damage was evaluated by applying the data of the damaged cable-stayed bridge to the Improved Mahalanobis Distance (IMD) theory from the data of the intact cable-stayed bridge. As a result of evaluating damage with IMD theory, it was identified as a useful damage evaluation technology that can properly find damage by section in real time and apply it to real-time monitoring.

Underwater Target Localization Using the Interference Pattern of Broadband Spectrogram Estimated by Three Sensors (3개 센서의 광대역 신호 스펙트로그램에 나타나는 간섭패턴을 이용한 수중 표적의 위치 추정)

  • Kim, Se-Young;Chun, Seung-Yong;Kim, Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.173-181
    • /
    • 2007
  • In this paper, we propose a moving target localization algorithm using acoustic spectrograms. A time-versus-frequency spectrogram provide a information of trajectory of the moving target in underwater. For a source at sufficiently long range from a receiver, broadband striation patterns seen in spectrogram represents the mutual interference between modes which reflected by surface and bottom. The slope of the maximum intensity striation is influenced by waveguide invariant parameter ${\beta}$ and distance between target and sensor. When more than two sensors are applied to measure the moving ship-radited noise, the slope and frequency of the maximum intensity striation are depend on distance between target and receiver. We assumed two sensors to fixed point then form a circle of apollonios which set of all points whose distances from two fixed points are in a constant ratio. In case of three sensors are applied, two circle form an intersection point so coordinates of this point can be estimated as a position of target. To evaluates a performance of the proposed localization algorithm, simulation is performed using acoustic propagation program.