• Title/Summary/Keyword: Position measurement

Search Result 2,295, Processing Time 0.03 seconds

The Effects of Tibial Rotation on Muscle Activity and Force of Hamstring Muscle During Isometric Knee Flexion in Healthy Women

  • Ko, Min-Joo;Kang, Min-Hyeok
    • PNF and Movement
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Purpose: The purpose of this study was to determine how the position of tibial rotation affects peak force and hamstring muscle activation during isometric knee flexion in healthy women. Methods: Seventeen healthy women performed maximum isometric knee flexion at 30˚ with three tibial rotation positions (tibial internal rotation, neutral position, and tibial external rotation). Surface electromyographic (EMG) activity was recorded from the medial hamstring (MH) and lateral hamstring (LH) muscles. The strength of the knee flexor was measured with a load-cell-type strength-measurement sensor. Data were analyzed using one-way repeated analysis of variance. Results: The results showed that MH and LH activities and peak force were significantly different among the three tibial rotation conditions (p < 0.01). The post-hoc comparison revealed that the MH EMG activity in tibial neutral and internal rotation positions were significantly greater than tibial external rotation (p < 0.01). The LH activity in tibial external rotation was significantly greater than the tibial neutral position and internal rotation (p < 0.01). The peak force of the knee flexor was also greater in the external tibial rotation position compared with the tibial neutral and internal rotation positions (p < 0.01). Conclusion: Our findings suggest that hamstring muscle activation could be changed by tibial rotation.

Robotic Workplace Calibration Using Teaching Data of Work-Piece Fixed in Robotic Workplace for Robot Off-line Programming (로봇 오프라인 프로그래밍을 위한 작업장에 고정된 공작물 교시 정보를 이용한 로봇작업장 보정)

  • Jeong, Jun Ho;Kuk, Kum Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.615-621
    • /
    • 2013
  • The robot calibration has greatly improved the absolute accuracy of the industrial robot. However, the accuracy of the relative positions of robotic tool-tip at work-points on a work-piece is only slightly corrected by the robot calibration since there has been no practical method to eliminate the elements of the setup position errors at a robotic workplace. A robotic workplace calibration is demonstrated in this paper to minimize the relative position errors between a robot tool-tip and the work-point on a work-piece. The existing teaching and playback method has been developed for the robotic workplace calibration. This paper uses the work-piece fixed in a robotic work-place as measurement equipment instead of a special robot measurement equipment for the robotic workplace calibration. The positive effect of the robotic workplace calibration is supported by the results of computer simulation on an ideal robotic workplace model and an experiment at the actual robotic workplace.

A miniaturized attitude estimation system for a gesture-based input device with fuzzy logic approach

  • Wook Chang;Jing Yang;Park, Eun-Seok;Bang, Won-Chul;Kang, Kyoung-Ho;Cho, Sung-Jung;Kim, Dong-Yoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.616-619
    • /
    • 2003
  • In this paper, we develop an input device equipped with accelerometers and gyroscopes. The installed sensors measure the inertial measurements i.e., accelerations and angular rates produced by the movement of the system when a user is writing on the plane surface or in the three dimensional space. The gyroscope measurement are integrated once to give the attitude of the system and consequently used to remove the gravity included in the acceleration measurements. The compensated accelerations bin doubly integrated to yield the position of the system. Due to the integration processes involved in recovering the users'motions, the accuracy of the position estimation significantly deteriorates with time. Among various error sources of the system incorrect estimation of attitude causes the largest portion of the positioning error since the gravity is not fully cancelled. In order to solve this problem, we propose a Kalman filler-based attitude estimation algorithm which fuses measurement data from accelerometers and gyroscopes by fuzzy logic approach. In addition, the online calibration of the gyroscope biases are performed in parallel with the attitude estimation to give more accurate attitude estimation. The effectiveness and the feasibility of the presented system is demonstrated through computer simulations and actual experiments.

  • PDF

Position Detection Algorithm for Auto-Landing Containers by Laser-Sensor, Part II: 2-D Measurement (컨테이너의 자동랜딩을 위한 레이저센서 기반의 절대위치 검출 알고리즘: 2차원 측정 (Part II))

  • Hong, Keum-Shik;Lim, Sung-Jin;Kang, Min-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.55-60
    • /
    • 2007
  • In contrast to the method in Part I, which is considered to be the general approach, Part II pursues a closed-form solution. However, this closed-form solution is available only in the 2D situation under the assumption that the moving object is restricted to a 2D space, and also requires the use of only two laser-slit sensors. Since the motion of the container loaded on top of an AGV is restricted to a plane parallel to the ground, it can be considered a 2D motion. As a simple method, but with a high cost, the use of a laser scanner is also discussed. Since the approach in Part I already uses three laser-slit sensors, it is desirable to use the schemes presented in Part II for supplementary purposes.

PIV measurement on flow characteristics behind a Tetrapod in uniform flow (균일 흐름에 놓인 테트라포드 후류 유동특성에 대한 PIV 계측)

  • Gim, Ok-Sok;Lee, Kyeong-Woo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.3
    • /
    • pp.207-217
    • /
    • 2008
  • Costal regions in Korea often suffer severe damages due to wave-induced disasters, storm surge disasters and so on. therefore, many engineers and researchers have devoted their energy to prevent these costal disasters. The development of artificial reefs including sunken vessels is one of their remarkable achievements and various kind of these artificial upwelling structures have been designed and applied. However, the flow characteristics around a Tetrapod under the water has not been investigated experimentally. So in this article, in uniform flow of circulating water channel and some different velocities, PIV measurement has been conducted on the flow characteristics behind a Tetrapod. The results were analyzed on the flow characteristics of both cases of a Tetrapod. Therefore, it can be concluded that the both cases have its own distinctive flow characteristics behind the bluff body; Case A has an steep upstream flow pattern. On the contrary, Case B has an developed downstream flow pattern in the near wake of the Tetrapod. The velocity gradient at position x=150mm of Case-A appears gently up and down But, the velocity gradient at the same position of Case-B appears better highly up and down.

Characteristics of the Laser Displacement Sensor Using Optical Triangulation Method (광삼각법을 이용한 레이저 변위 센서의 특성 연구)

  • Park, Jong-Sung;Jeong, Kyu-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.40-50
    • /
    • 1999
  • Recently, a laser displacement sensor is widely used for the manufacturing automation. The sensor is generally composed of a diode laser and a light receiving device. The diode laser emits a laser beam and the receiving device detects the light reflected from the measured object. The object position is obtained based upon triangulation method. As a light receiving device, a PSD is usually utilized since its structure is very simple and rugged and has a high accuracy. Although the theoretical relationship for this sensor had been developed, the characteristics of the sensor have not been much experimentally studied. In this paper, several experimental results will presented. The measurement accuracy is affected by the surface conditions such as the reflectance characteristics, the angle of the object's surface and the laser intensity. In addition, it is found that the PSD and the signal processing circuit have nonlinearities and showed that those nonlinearities can be reduced by controlling the emitting laser intensity.

  • PDF

Comparison of Drift Reduction Methods for Pedestrian Dead Reckoning Based on a Shoe-Mounted IMU

  • Jung, Woo Chang;Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.345-354
    • /
    • 2019
  • The 3D position of pedestrians is a physical quantity used in various fields, such as automotive navigation and augmented reality. An inertial navigation system (INS) based pedestrian dead reckoning (PDR), hereafter INS-PDR, estimates the relative position of pedestrians using an inertial measurement unit (IMU). Since an INS-PDR integrates the accelerometer signal twice, cumulative errors occur and cause a rapid increase in drifts. Various correction methods have been proposed to reduce drifts. For example, one of the most commonly applied correction method is the zero velocity update (ZUPT). This study investigated the characteristics of the existing INS-PDR methods based on shoe-mounted IMU and compared the estimation performances under various conditions. Four methods were chosen: (i) altitude correction (AC); (ii) step length correction (SLC); (iii) advanced heuristic drift elimination (AHDE); and (iv) magnetometer-based heading correction (MHC). Experimental results reveal that each of the correction methods shows condition-sensitive performance, that is, each method performs better under the test conditions for which the method was developed than it does under other conditions. Nevertheless, AC and AHDE performed better than the SLC and MHC overall. The AC and AHDE methods were complementary to each other, and a combination of the two methods yields better estimation performance.

Uncertainty Minimization in Quantitative Electron Spin Resonance Measurement: Considerations on Sampling Geometry and Signal Processing

  • Park, Sangeon;Shim, Jeong Hyun;Kim, Kiwoong;Jeong, Keunhong;Song, Nam Woong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.2
    • /
    • pp.53-58
    • /
    • 2020
  • Free radicals including reactive oxygen species (ROS) are important chemicals in the research area of biology, pharmaceutical, medical, and environmental science as well as human health risk assessment as they are highly involved in diverse metabolism and toxicity mechanisms through chemical reactions with various components of living bodies. Electron spin resonance (ESR) spectroscopy is a powerful tool for detecting and quantifying those radicals in biological environments. In this work we observed the ESR signal of 2,2,6,6-Tetra-methyl piperidine 1-oxyl (TEMPO) in aqueous solution at various concentrations to estimate the uncertainty factors arising from the experimental conditions and signal treatment methods. As the sample position highly influences the signal intensity, dual ESR tube geometry (consists of a detachable sample tube and a position fixed external tube) was adopted. This type of measurement geometry allowed to get the relative uncertainty of signal intensity lower than 1% when triple measurements are averaged. Linear dependence of signal intensity on the TEMPO concentration, which is required for the quantification of unknown sample, could be obtained over a concentration range of ~103 by optimizing the signal treatment method depending on the concentration range.

EGI Velocity Integration Algorithm for SAR Motion Measurement

  • Lee, Soojeong;Park, Woo Jung;Park, Yong-gonjong;Park, Chan Gook;Song, Jong-Hwa;Bae, Chang-Sik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.175-181
    • /
    • 2019
  • This paper suggests a velocity integration algorithm for Synthetic Aperture Radar (SAR) motion measurement to reduce discontinuity of range error. When using position data from Embedded GPS/INS (EGI) to form SAR image, the discontinuity of the data degrades SAR image quality. In this paper, to reduce the discontinuity of EGI position data, EGI velocity integration is suggested which obtains navigation solution by integrating velocity data from EGI. Simulation shows that the method improves SAR image quality by reducing the discontinuity of range error. INS is a similar algorithm to EGI velocity integration in the way that it also obtains navigation solution by integrating velocity measured by IMU. Comparing INS and EGI velocity integration according to grades of IMU and GPS, EGI velocity integration is more suitable for the real system. Through this, EGI velocity integration is suggested, which improves SAR image quality more than existing algorithms.

Development and Implementation of Extension Models for Activity-Based Costing (ABC 확장모형의 개발 및 적용)

  • Choi, Sungwoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.1
    • /
    • pp.239-250
    • /
    • 2014
  • The purpose of this research is to implement and develop the Economic Cost Driver Size(ECDS) extended model to determine the optimal cash driver size with measurement complexity cost and allocation fail cost. ECDS model can be used to seek both measurement accuracy and time efficiency of the Activity-Base Costing (ABC). The study also develops Activity Priority Number (APN) to evaluate the importance of nonvalue-added activities improvement and to determine the representative cost driver of value-added activities when applying ECDS model. APN consists of Severity Priority Number (SPN), Undetectablitiy Priority Number (UPN) and Occurrence Priority Number (OPN). APN can be obtained from lower-stream activity, current activity, upper-stream activity in terms of hierarchical dependency of SIPOC (Supplier, Input, Process, Output, and Customer). In order to seek both efficiency of invested capital and reduction of overhead cost, the paper proposes the integrated ABC and Economic Value Added (EVA) model using redesigned ABC-based statement of comprehensive income and EVA-based statement of financial position. For a better understanding of the proposed ABC-EVA integrated model, numerical examples are demonstrated in this paper. Cost drivers of ABC and capital drivers of EVA in the proposed model can be used to reduce activity overhead cost from ABC-based statement of comprehensive income and to lessen activity capital charge from EVA-based statement of financial position.