• Title/Summary/Keyword: Position measurement

Search Result 2,294, Processing Time 0.031 seconds

A Study on Commercial Power of Traditional Market

  • Baik, Key-Young;Youn, Myoung-Kil
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.4 no.2
    • /
    • pp.1-11
    • /
    • 2016
  • This study investigated commercial power theory of traditional market through the analysis of literature review. Consumers' store selection models are made up a theory based on normative hypothesis, theory of mutual reaction, utility function estimation model, and cognitive-behavioral model. Detailed models are as follows. Normative hypothesis based theory is divided into Reilly's retail gratification theory and Converse's revised retail g ratification theory. Interaction theory is composed of Huff's probability gratification theory, MCI model and Multi-nominal Logit Model (MNL model). There are four models in retail organization position theory such as central place theories, single store position theory, multi store position - assign model, and retail growth potential model. In case of single store position theory, theoretical and empirical techniques have developed for a decision to optimum single store position. Those are like these, a check list, the most simple and systematic method, analogy, and microanalysis technique. Aforementioned models are theoretical and mathematical commercial power measurement and/or model. The study has rather limitations because the variation factors included in formula are only a part of actual commercial power. Therefore, further study shall be made continuously to commercial power areas and variables.

Estimation of 2D Position and Flatness Errors for a Planar XY Stage Based on Measured Guideway Profiles

  • Hwang, Joo-Ho;Park, Chun-Hong;Kim, Seung-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.64-69
    • /
    • 2007
  • Aerostatic planar XY stages are frequently used as the main frames of precision positioning systems. The machining and assembly process of the rails and bed of the stage is one of first processes performed when the system is built. When the system is complete, the 2D position, motion, and stage flatness errors are measured in tests. If the stage errors exceed the application requirements, the stage must be remachined and the assembly process must be repeated. This is difficult and time-consuming work. In this paper, a method for estimating the errors of a planar XY stage is proposed that can be applied when the rails and bed of the stage are evaluated. Profile measurements, estimates of the motion error, and 2D position estimation models were considered. A comparison of experimental results and our estimates indicated that the estimated errors were within $1{\mu}m$ of their true values. Thus, the proposed estimation method for 2D position and flatness errors of an aerostatic planar XY stage is expected to be a useful tool during the assembly process of guideways.

A Study on Precision Position Measurement Method for Analog Quadrature Encoder (정현파 엔코더를 이용한 정밀위치 측정방법에 관한 연구)

  • Kim Myong-Hwan;Kim Jang-Mok;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.485-490
    • /
    • 2004
  • This paper presents a new interpolation algorithm for measuring high resolution position information which is prepared to a nino servo control motor using analog quadrature encoder. In the past, there are large capacity of memory(ROM or RAM) and two high price and resolution A/D(Analog-to-Digital Converter) for sensing two quadrature signals from a analog sinusoidal encoder interpolation. But high resolution of position from sinusoidal encoder can be obtained by using only small capacity of memory, one A/D converter and comparator. Experimental results show that the proposed algorithm is useful for measuring high resolution position.

Development of a Remote Object's 3D Position Measuring System (원격지 물체의 삼차원 위치 측정시스템의 개발)

  • Park, Kang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.60-70
    • /
    • 2000
  • In this paper a 3D position measuring device that finds the 3D position of an arbitarily placed object using a camersa system is introduced. The camera system consists of three stepping motors and a CCD camera and a laser. The viewing direction of the camera is controlled by two stepping motors (pan and tilt motors) and the direction of a laser is also controlled by a stepping motors(laser motor). If an object in a remote place is selected from a live video image the x,y,z coordinates of the object with respect to the reference coordinate system can be obtained by calculating the distance from the camera to the object using a structured light scheme and by obtaining the orientation of the camera that is controlled by two stepping motors. The angles o f stepping motors are controlled by a SGI O2 workstation through a parallel port. The mathematical model of the camera and the distance measuring system are calibrated to calculate an accurate position of the object. This 3D position measuring device can be used to acquire information that is necessary to monitor a remote place.

  • PDF

Full-board position evaluation of 50 AlphaGo vs AlphaGo games, using influence function (세력 함수를 활용한 알파고 간의 50개 대국에 대한 형세 판단)

  • Lee, Byung-Doo
    • Journal of Korea Game Society
    • /
    • v.21 no.3
    • /
    • pp.107-116
    • /
    • 2021
  • Full-board position evaluation in Go is a measurement of judging the advantages and disadvantages between black and white players during a game playing, and through this, the proper tactics and strategies would be undertaken in the near future. In this paper, we tried to evaluate the full-board positions of the 50 AlphaGo vs AlphaGo games using influence function that halved according to the distance. According to the experimental results, there is a limit to making accurate evaluation when the full-board position is assessed only by influence function. In order to overcome this, it is necessary to solve life-and-death problems to deal with dead stones, and it showed that if this is reinforced, we can precisely evaluate the full-board position in Go.

Software Key Node Recognition Algorithm for Defect Detection based on Node Expansion Degree and Improved K-shell Position

  • Wanchang Jiang;Zhipeng Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1817-1839
    • /
    • 2024
  • To solve the problem of insufficient recognition of key nodes in the existing software defect detection process, this paper proposes a key node recognition algorithm based on node expansion degree and improved K-shell position, shortened as SDD_KNR. Firstly, the calculation formula of node expansion degree is designed to improve the degree that can measure the local defect propagation capability of nodes in the software network. Secondly, the concept of improved K-shell position of node is proposed to obtain the improved K-shell position of each node. Finally, the measurement of node defect propagation capability is defined, and the key node recognition algorithm is designed to identify the key function nodes with large defect impact range in the process of software defect detection. Using real software systems such as Nano, Cflow and Tar to design three sets of experiments. The corresponding directed weighted software function invoke networks are built to simulate intentional attack and defect source infection. The proposed SDD_KNR algorithm is compared with the BC algorithm, K-shell algorithm, KNMWSG algorithm and NMNC algorithm. The changing trend of network efficiency and the strength of node propagation force are analyzed to verify the effectiveness of the proposed SDD_KNR algorithm.

A Study on A Spacecraft Alignment Measurement System (위성체 얼라인먼트 측정 시스템에 관한 연구)

  • Park, Hong-Chul;Son, Young-Seon;Choi, Jong-Yeon;Yoon, Yong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.98-104
    • /
    • 2004
  • A spacecraft alignment measurement requires highly precise measurement accuracy which is less than ${\pm}0.5^{\circ}$. In general, such an alignment measurement has been performed by using three or more theodolites. However, it contains the latent accuracy error because of a position stability of spacecraft, etc. The new alignment measurement system which consists of a theodoilte, a rotating table and a digital inclinometer has been developed to possibly to possibly reduce the error. This paper describes the concept and methodology of methodology of measurement system. It was found that new measurement system can provide more accurate results than the conventional system.

The Effect of Proprioceptive Position Sense by Lumbar Flexors and Extensors

  • Park, Ji-Won;Ko, Yu-Min;Park, Seol
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.6
    • /
    • pp.414-418
    • /
    • 2012
  • Purpose: Muscle fatigue affects proprioception, and it causes problems in spinal stability. The purpose of this study was to examine the effect on the accuracy of reproducing the lumbar angles before lumbar exercise and after fatiguing isokinetic lumbar exercise. Methods: Thirty healthy adults participated in this study. Before induction of fatigue by exercise, the proprioception was measured by Biodex. Lumbar positions were passively maintained on stimulation position ($25^{\circ}$ flexion and $25^{\circ}$ extension), and back to the starting position. Subjects actively repositioned the remembered stimulation position, and error degrees between the stimulation position and reposition were measured. Using an isokinetic device at $120^{\circ}$/sec of velocity of angle lumbar flexion/extension exercise resulted in muscle fatigue. The post-fatigue proprioceptive position sense was used in the same way as in pre-fatigue measurement. Results: Means of position sense of pre-fatigue were $2.19{\pm}1.97$ on flexion angle, and $5.04{\pm}2.84$ on extension angle. After exercise induced fatigue, means of position sense were $2.37{\pm}1.83$ on flexion angle, and $4.93{\pm}2.57$ on extension angle. Results of this study showed significant differences of lumbar proprioceptive position sense between pre- and post-fatigue. Conclusion: Lumbar proprioception sense in active repositioning in flexion and extension was affected in the presence of muscle fatigue. Therefore, it should be noted that therapeutic exercise for patients with abnormal proprioceptive sense or elderly people must be performed with care because muscle fatigue can cause secondary damage.

Position estimation method based on the optical displacement sensor for an autonomous hull cleaning robot (선체 청소로봇 자동화를 위한 광 변위센서 기반의 위치추정 방법)

  • Kang, Hoon;Ham, Youn-jae;Oh, Jin-seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.385-393
    • /
    • 2016
  • This paper presents the new position estimation method which contains the optical displacement sensor and the dead reckoning based position estimation algorithm for automation of hull cleaning robot. To evaluate feasibility of the proposed position estimation method on the hull cleaning robot, it was applied on the small scale robot model which has an identical drive method with the hull cleaning robot and then a set of the position estimation experiments were performed. The experimental results of the position estimation demonstrate that the estimated results with the optical displacement sensors is more accurate than used rotary encoder method. In addition, it continuously calculated the robot position quite close to the real robot driving path. In a follow-up study, the proposed position estimation method will be complemented and exploited on the actual hull cleaning robot by adding additional sensor modules that correct measurement errors.

Virtual Satellite and Virtual Range Measurement Generation for the GNSS Position Accuracy Improvement (사용자 위치해 정확도 향상을 위한 가상위성 및 가상거리측정값 생성)

  • Song, Choongwon;Ahn, Jongsun;Choi, Moonseok;Jang, JinHyeok;Heo, MoonBeom;Lee, Young Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.757-765
    • /
    • 2017
  • GNSS (Global Navigation Satellite System) Position Accuracy depends on pseudo-range measurement and DOP (Dilution Of Precision) which indicates about navigation satellite geometry. Pseudo-Range has many error sources such as satellite clock, orbit, ionosphere, troposphere, multipath and so on. For the improvement of the accuracy, user can use corrected pseudo-range in DGPS (Differential Global Positioning System), which is one of the relative positioning methods. But, stationary station is needed in relative positioning. In case of DOP, Signal reception environment is important. If receiver sets in the center of city, it could be interrupted reception by buildings. This environment leads to decrease the number of visible satellites and to increase DOP. This paper proposes the concept of GNSS positioning with virtual satellites which have usable VRM (Virtual Range Measurement). Via virtual satellites and VRM, users could get an accurate position. Especially referred virtual satellites constellation has an effect on vertical error.