• 제목/요약/키워드: Position measurement

검색결과 2,294건 처리시간 0.032초

디지털경사계를 사용한 체간재위치오류 검사의 신뢰도 분석 (Analysis of Intrarater and Interrater Reliability of Trunk Repositioning Error Test using a Portable Digital Inclinometer)

  • 장우남;이경보;염준우;황병용
    • The Journal of Korean Physical Therapy
    • /
    • 제25권4호
    • /
    • pp.210-216
    • /
    • 2013
  • Purpose: A cost effective tool for the clinical measurement of trunk reposition sense is clearly needed. This study was to analyze intrarater and interrater Reliability of trunk repositioning error (TRE) test which assesses trunk position sense using a portable digital inclinometer. Methods: Twenty four normal healthy subjects were recruited. TRE was measured using a portable digital inclinometer. A digital inclinometer (Acumar-ACU360; Lafayetter Instrument) with precision to $1^{\circ}$ was placed on skin over the spinous process from first to second thoracic vertebra (T1-T2) and secured with double-sided tape. TRE test during sitting forward and lateral flexion movement was assessed. When they reached a point approximately 50% of full trunk flexion range, the examiner instructed the subjects to stop and told them. This was the target position that they should try to reproduce exactly. Each subject performed six trials. Results: ICC (2,1) for intrarater reliability (with-day and between-day) of TRE test in sagittal and frontal plane of movement was 0.75 and 0.78 (excellent reliability). Interrater reliability was 0.66 in sagittal and 0.64, frontal plane (fair to good reliability). However, there were poor correlations between an average of TRE test in sagittal and frontal plane. Conclusion: TRE test using a portable digital inclinometer demonstrated good to excellent reliability. The device may be a cost effective clinical measurement for trunk reposition sense measurement.

60대 후반 노년 여성의 슬랙스 원형 연구 (A Study on the Original Form of Slacks of Elderly Women in Their Late 60s)

  • 문순이;박길순
    • 복식문화연구
    • /
    • 제19권5호
    • /
    • pp.929-944
    • /
    • 2011
  • The purpose of this study was to compare and analyze two original forms of slacks for thesis to extract outward appearance of design original form applying design measures of the above through diverse research methods. The results of this study are as follow: In original form F, the original form of slacks sloper suitable to elderly women 65~9 years old was W/4+3.5+0.5cm in the front/back circumference of waist, H/4cm in the front/back circumference of hip, (H/4+1+3.8)/2cm in the position of centerline, 19cm in actual measurement value of hip length, 25cm in actual measurement value of crotch depth, (knee crotch circumference~bottom line)/2+10cm and 90 (side waist dot~ lateral malleolus length)cm in actual measurement. front dart position was 1/3 and 2/3 of front waist centerline and back dart position was 1/3 and 2/3 of back waist circumference. It was suggested that front dart quantity (length) was 3.5(11)cm, back dart quantity 3.4 (10.2)cm, side waist up quantity 0.7cm, back down quantity 1.5cm, front crotch width (H/4+1)/4-1cm, back crotch width (H/4+1)/4+4, front knee width 21.8cm, back knee width 24.4cm, front pant leg 20.8cm, and back pant leg 23.4cm.

USB 카메라를 이용한 골프 퍼팅 결과 기록 장치의 개발 (Development of a Golf Putting Result Recording System Using USB Camera)

  • 김형식;최진승;탁계래;임영태;이정한
    • 한국운동역학회지
    • /
    • 제20권2호
    • /
    • pp.239-243
    • /
    • 2010
  • The putting stroke accounts for 40~50% of total stroke for a golf rounding and most golfers have difficulties on the puting. Studies for the putting stroke have been conducted by analyzing various factors such as kinematics, kinetics, psychologic and physiologic parameters. A lot of devices were developed to support the studies. However there was no appropriate method to measure the position of the ball quantitatively. In this study, we developed a new measurement system to measure and evaluate the putting result. The developed system uses a USB camera to take the 2-dimensional image of the surface including the hole cup at the center of the image and the ball. The position of the ball is extracted as a set of distance and angle in polar coordinate system. We evaluated the new system with an indoor set-up for putting experiments and the system provided accurate measurement results. The proposed system can be combined with the other measurement systems such as 3D motion capture system and force plate without any restriction.

PSD를 이용한 플라스틱 박막 필름의 경사 각도 측정 시스템 개발 (Development of Tilt angle measurement system of plastic thin-film using Position Sensitive Device)

  • 김기승;박윤창
    • 한국산학기술학회논문지
    • /
    • 제22권2호
    • /
    • pp.134-138
    • /
    • 2021
  • 스마트폰 등에서 사용되는 고성능 디스플레이에는 다양한 종류의 정밀한 플라스틱 박막 필름(Plastic Thin Film)이 사용되고 있다. 롤투롤(Roll-To-Roll) 공정으로 제조되는 플라스틱 박막 필름은 생산 공정 중에 실시간으로 필름의 두께가 계측되고, 정확하게 관리되어야 한다. 필름 제조 과정에서 필름에 장력이 작용하면서 주름이 발생되고, 이러한 주름 발생은 필름의 두께 방향과 두께 측정기의 광축이 서로 경사지게 한다. 결국 두께 측정기는 필름의 수직 두께가 아닌 경사진 두께를 측정하게 됨으로써 실제 두께보다 더 큰 값으로 측정하게 된다. 본 연구에서는, 플라스틱 필름의 경사로 인하여 발생하게 되는 두께 측정기에서의 계측값 오차를 보정하기 위하여, 필름의 경사 각도를 계측하는 연구가 진행되었다. 플라스틱 필름에 슬릿 빔 레이저를 조사하고, 필름에서 반사되는 슬릿 빔 레이저가 PSD(Position Sensitive Device)에 맺히는 광학 시스템을 구성하였으며, 실험을 통하여 필름의 경사 각도와 PSD 출력값의 관계를 1차 방정식 형태로 구하였다. 이를 이용하여 필름의 경사 각도를 측정하는 장치가 구축되었으며, 250KHz의 속도로 경사 각도의 측정이 가능하였다.

A Study of 100 tonf Tensile Load for SMART Mooring Line Monitoring System Considering Polymer Fiber Creep Characteristics

  • Chung, Joseph Chul;Lee, Michael Myung-Sub;Kang, Sung Ho
    • 한국해양공학회지
    • /
    • 제35권4호
    • /
    • pp.266-272
    • /
    • 2021
  • Mooring systems are among the most important elements employed to control the motion of floating offshore structures on the sea. Considering the use of polymer material, a new method is proposed to address the creep characteristics rather than the method of using a tension load cell for measuring the tension of the mooring line. This study uses a synthetic mooring rope made from a polymer material, which usually consists of three parts: center, eye, and splice, and which makes a joint for two successive ropes. We integrate the optical sensor into the synthetic mooring ropes to measure the rope tension. The different structure of the mooring line in the longitudinal direction can be used to measure the loads with the entire mooring configuration in series, which can be defined as SMART (Smart Mooring and Riser Truncation) mooring. To determine the characteristics of the basic SMART mooring, a SMART mooring with a diameter of 3 mm made of three different polymer materials is observed to change the wavelength that responds as the length changes. By performing the longitudinal tension experiment using three different SMART moorings, it was confirmed that there were linear wavelength changes in the response characteristics of the 3-mm-diameter SMART moorings. A 54-mm-diameter SMART mooring is produced to measure the response of longitudinal tension on the center, eye, and splice of the mooring, and a longitudinal tension of 100 t in step-by-step applied for the Maintained Test and Fatigue Cycle Test is conducted. By performing a longitudinal tension experiment, wavelength changes were detected in the center, eye, and splice position of the SMART moorings. The results obtained from each part of the installed sensors indicated a different strain measurement depending on the position of the SMART moorings. The variation of the strain measurement with the position was more than twice the result of the difference measurement, while the applied external load increased step-by-step. It appears that there is a correlation with an externally generated longitudinal tensional force depending on the cross-sectional area of each part of the SMART mooring.

A Robotic Vision System for Turbine Blade Cooling Hole Detection

  • Wang, Jianjun;Tang, Qing;Gan, Zhongxue
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.237-240
    • /
    • 2003
  • Gas turbines are extensively used in flight propulsion, electrical power generation, and other industrial applications. During its life span, a turbine blade is taken out periodically for repair and maintenance. This includes re-coating the blade surface and re-drilling the cooling holes/channels. A successful laser re-drilling requires the measurement of a hole within the accuracy of ${\pm}0.15mm$ in position and ${\pm}3^{\circ}$ in orientation. Detection of gas turbine blade/vane cooling hole position and orientation thus becomes a very important step for the vane/blade repair process. The industry is in urgent need of an automated system to fulfill the above task. This paper proposes approaches and algorithms to detect the cooling hole position and orientation by using a vision system mounted on a robot arm. The channel orientation is determined based on the alignment of the vision system with the channel axis. The opening position of the channel is the intersection between the channel axis and the surface around the channel opening. Experimental results have indicated that the concept of cooling hole identification is feasible. It has been shown that the reproducible detection of cooling channel position is with +/- 0.15mm accuracy and cooling channel orientation is with +/$-\;3^{\circ}$ with the current test conditions. Average processing time to search and identify channel position and orientation is less than 1 minute.

  • PDF

항만 자동화를 위한 야드 크레인의 절대위치 측정 기법 (Method for Measuring Absolute Position of a Yard Crane for Port Automation)

  • 전태원;김경만;이홍희;김흥근;노의철
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.439-445
    • /
    • 2003
  • Since 1960s. container shipping volume has increased dramatically and continuous on a trend of rapid growth, and so the number of containers handled at the port increases. In order to improve yard crane operating efficiency, the precise position measurement of the yard crane is important. This paper describes the method to measure the absolute position of yard crane using the output pulse of an encoder and infrared sensors. The crane position is calculated by counting the output pulse of an incremental encoder, which is mounted on the wheel in the crane. By the way, the wheel slippage on rail may cause some errors in crane position information obtained from encoder pulses, and the errors in the crane position information are compensated with infrared sensors. The performance of proposed method is verified on experimental results with the simulator of yard crane, the size of which is about 1/10 with the real crane.

  • PDF

온도 보상을 이용한 자기변형 위치 센서의 정확도 향상 방법 (A Novel Method for Improving the Positioning Accuracy of a Magnetostrictive Position Sensor Using Temperature Compensation)

  • 유은주;박영우;노명규
    • 센서학회지
    • /
    • 제28권6호
    • /
    • pp.414-419
    • /
    • 2019
  • An ultrasonic based magnetostrictive position sensor (MPS) provides an indication of real target position. It determines the real target position by multiplying the propagation speed of ultrasonic wave and the time-of-flight between the receiving signals; one is the initial signal by an excitation current and the other is the reflection signal by the ultrasonic wave. The propagation speed of the ultrasonic wave depends on the temperature of the waveguide. Hence, the change of the propagation speed in various environments is a critical factor in terms of the positioning accuracy in the MPS. This means that the influence of the changes in the waveguide temperature needs to be compensated. In this paper, we presents a novel way to improve the positioning accuracy of MPSs using temperature compensation for waveguide. The proposed method used the inherent measurement blind area for the structure of the MPS, which can simultaneously measure the position of the moving target and the temperature of the waveguide without any additional devices. The average positional error was approximately -23.9 mm and -1.9 mm before and after compensation, respectively. It was confirmed that the positioning accuracy was improved by approximately 93%.

신체 분절의 연조직 변형을 고려한 관성센서신호 기반의 상대위치 추정 칼만필터 (Relative Position Estimation using Kalman Filter Based on Inertial Sensor Signals Considering Soft Tissue Artifacts of Human Body Segments)

  • 이창준;이정근
    • 센서학회지
    • /
    • 제29권4호
    • /
    • pp.237-242
    • /
    • 2020
  • This paper deals with relative position estimation using a Kalman filter (KF) based on inertial sensors that have been widely used in various biomechanics-related outdoor applications. In previous studies, the relative position is determined using relative orientation and predetermined segment-to-joint (S2J) vectors, which are assumed to be constant. However, because body segments are influenced by soft tissue artifacts (STAs), including the deformation and sliding of the skin over the underlying bone structures, they are not constant, resulting in significant errors during relative position estimation. In this study, relative position estimation was performed using a KF, where the S2J vectors were adopted as time-varying states. The joint constraint and the variations of the S2J vectors were used to develop a measurement model of the proposed KF. Accordingly, the covariance matrix corresponding to the variations of the S2J vectors continuously changed within the ranges of the STA-causing flexion angles. The experimental results of the knee flexion tests showed that the proposed KF decreased the estimation errors in the longitudinal and lateral directions by 8.86 and 17.89 mm, respectively, compared with a conventional approach based on the application of constant S2J vectors.

The Theoretical Study of the Measuring Thermal Diffusivity of Semi-Infinite Solid Using the Photothermal Displacement

  • Jeon, PiIsoo;Lee, Kwangjai;Yoo, Jaisuk;Park, Youngmoo;Lee, Jonghwa
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1712-1721
    • /
    • 2004
  • A method of measuring the thermal diffusivity of semi-infinite solid material at room temperature using photothermal displacement is proposed. In previous works, within the constant thickness of material, the thermal diffusivity was determined by the magnitude and phase of deformation gradient as the relative position between the pump and probe beams. In this study, however, a complete theoretical treatment of the photothermal displacement technique has been performed for thermal diffusivity measurement in semi-infinite solid materials. The influence of parameters, such as, radius and modulation frequency of the pump beam and the thermal diffusivity, was studied. We propose a simple analysis method based on the zero -crossing position of real part of deformation gradient and the minimum position of phase as the relative position between two beams. It is independent of parameters such as power of pump beam, absorption coefficient, reflectivity, Poisson's ratio, and thermal expansion coefficient.