• Title/Summary/Keyword: Position feedback

Search Result 711, Processing Time 0.024 seconds

The Effects of Sit-to-stand Training with Various Foot Positions Combined with Visual Feedback on Muscle Onset Time and Balance in Stroke Patients (다양한 발위치와 시각적 피드백 유무에 따른 일어서기 훈련이 뇌졸중환자의 일어서기 동작 시 근수축개시시간과 균형능력에 미치는 영향)

  • Kim, Su-jin;Son, Ho-hee
    • PNF and Movement
    • /
    • v.20 no.1
    • /
    • pp.115-123
    • /
    • 2022
  • Purpose: The aim of this study was to investigate the effects of sit-to-stand training with various foot positions combined with visual feedback on muscle onset time and balance in stroke patients. Methods: Thirty stroke patients were randomly assigned into three standing groups: one with a symmetrical foot position (SSF; n = 10), one with an asymmetrical foot position with the affected foot at the rear (SAF; n = 10), and one with visual feedback and an asymmetrical foot position (SVAF; n = 10). Sit-to-stand training with different foot positions was performed for 30 minutes a day, 5 times a week, for a total of 4 weeks. The effects on muscle onset time and balance were assessed. Results: In a comparison of the onset time of muscle contraction, the onset time of the affected side tibialis anterior and less-affected side gastrocnemius muscle and tibialis anterior was significantly shortened in the SAVF group. And onset time of the less-affected side tibialis anterior was shortened in the SAF group. There was a significant difference in the result of functional reach testing in the SVAF group. Conclusion: VRG was effective in improving muscle activity and balance in elderly women aged 65 and older. In this study, sit-to-stand training with visual feedback and asymmetrical foot position showed significant functional improvement.

A Feedback Linearization Control of Container Cranes: Varying Rope Length

  • Park, Hahn;Chwa, Dong-Kyoung;Hong, Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.379-387
    • /
    • 2007
  • In this paper, a nonlinear anti-sway controller for container cranes with load hoisting is investigated. The considered container crane involves a planar motion in conjunction with a hoisting motion. The control inputs are two (trolley and hoisting forces), whereas the variables to be controlled are three (trolley position, hoisting rope length, and sway angle). A novel feedback linearization control law provides a simultaneous trolley-position regulation, sway suppression, and load hoisting control. The performance of the closed loop system is shown to be satisfactory in the presence of disturbances at the payload and rope length variations. The advantage of the proposed control law lies in the full incorporation of the nonlinear dynamics by partial feedback linearization. The uniform asymptotic stability of the closed-loop system is assured irrespective of variations of the rope length. Simulation and experimental results are compared and discussed.

A Literature Review on the effect of Visual and Auditory Feedback(Balance Training System/The Target) at Dynamic Balance training (동적 균형 훈련시 시.청각 피드백(Balance Training System/The Target)의 효과에 관한 고찰)

  • Lee, Jong-Sam;Yoo, Jae-Eung
    • Journal of Korean Physical Therapy Science
    • /
    • v.11 no.2
    • /
    • pp.38-45
    • /
    • 2004
  • Appropriate physical position and balance means giving the least stress and the most useful biomechanically to the body. As this fails, one would have functional recovery problem regardless of disability. There reported better effective on Dynamic training rather than Static training for a proper recovery of physical position, and additionally required Sensory Feedback. Those who have disability of balance, especially Central Nervous System lesion should he provided with variety of Sensory Feedback, and also Dynamic Balance training used by is quite effective.

  • PDF

A Real-Time Control of SCARA Robot Based Image Feedback (이미지 피드백에 의한 스카라 로봇의 실시간 제어)

  • Lee, Woo-Song;Koo, Young-Mok;Shim, Hyun-Seok;Lee, Sang-Hoon;Kim, Dong-Yeop
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.2
    • /
    • pp.54-60
    • /
    • 2014
  • The equipment of SCARA robot in processing and assembly lines has rapidly increased. In order to achieve high productivity and flexibility, it becomes very important to develop the visual feedback control system with Off-Line Programming System(OLPS). We can save much efforts and time in adjusting robots to newly defined workcells by using OLPS. A proposed visual calibration scheme is based on position-based visual feedback. The calibration program firstly generates predicted images of objects in an assumed end-effector position. The process to generate predicted images consists of projection to screen-coordinates, visible range test, and construction of simple silhouette figures. Then, camera images acquired are compared with predicted ones for updating position and orientation data. Computation of error is very simple because the scheme is based on perspective projection, which can be also expanded to experimental results. Computation time can be extremely reduced because the proposed method does not requirethe precise calculation of tree-dimensional object data and image Jacobian.

Admittance Model-Based Nanodynamic Control of Diamond Turnning Machine (어드미턴스 모델을 이용한 다이아몬드 터닝머시인의 극초정밀 제어)

  • 정상화;김상석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.49-52
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. The limitation of this control scheme is that the feedback signal does not account for additional dynamics of the tool post and the material removal process. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surfice. However, as the accuracy requirement gets tighter and desired surface contours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining processprohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normalto the face of the workpice can be filterd through an appropriate admittance transfer function to result in the estimated depth of cut. This can be compared to the desired depth of cut to generate the adjustment cotnrol action in addition to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. Based on the empirical data of the cutting dynamics, simulation results are shown.

  • PDF

Research of Synthetic Resonance Characteristics for Electrohydraulic Thrust Vector Control Actuation System (전기-유압식 추력벡터제어 구동장치시스템의 합성공진 특성 연구)

  • Min, Byeong-Joo;Choi, Hyung-Don;Kang, E-Sok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.151-160
    • /
    • 2008
  • In this paper, the analysis results of synthetic resonance characteristics are described for the electrohydraulic thrust vector control actuation system. The synthetic resonance is induced by integration of position servo actuation system on the flexible launch vehicle mounting structure. The new resonance mode is synthesized due to composition of hydraulic resonance for electrohydraulic position servo system with inertia load condition and structural resonance for flexible mounting structure. This synthetic resonance can make stability of control system worse by feedback and amplification of control system. The exact nonlinear analysis model of this phenomenon is developed to predict and design a control algorithm for improvement characteristics. The DPF (Dynamic Pressure Feedback) control algorithm has been designed and has excellent resonance suppression capability.

  • PDF

Position/Force Control of a Robot by a Nonlinear Compensator and Feedforward Control (비선형 보상기와 피드포워드 제어에 의한 로봇의 위치/힘 제어)

  • 황용연
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.232-240
    • /
    • 1998
  • This paper deals with a hybrid position/force control of a robot which is moving on the constrained object with constant force. The proposed controller is composed of a position and force controller. The position controller has a nonlinear compensator which is based on the dynamic robot model and the force controller is attached by feedforward element. A direct drive robot with hard nonlinearity which is controlled by the proposed algorithm has moved on the constrained object with a high stiffness and low stiffness. The results show that the proposed controller has more vibration suppression effects which is occurred to the constrained object with a high stiffness, than a existing feedback controller, and accurate force control can be obtained by comparatively a small feedback gain.

  • PDF

Control Method for the Tool Path in Aspherical Surface Grinding and Polishing

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.51-56
    • /
    • 2006
  • This paper proposes a control algorithm, which is verified experimentally, for aspherical surface grinding and polishing. The algorithm provides simultaneous control of the position and interpolation of an aspheric curve. The nonlinear formula for the tool position was derived from the aspheric equation and the shape of the tool. The function was partitioned at specific intervals and the control parameters were calculated at each control section. The position, acceleration, and velocity at each interval were updated during the process. A position error feedback was introduced using a rotary encoder. The feedback algorithm corrected the position error by increasing or decreasing the feed speed. In the experimental verification, a two-axis machine was controlled to track an aspherical surface using the proposed algorithm. The effects of the control and process parameters were monitored. The results demonstrated that the maximum tracking error with tuned parameters was at the submicron level for concave and convex surfaces.

The Effect of External-feedback Weight-bearing Training Protecting a Fall in Hemiplegic Patients (성인 편마비환자의 외적 되먹임 체중부하훈련이 낙상예방에 미치는 효과)

  • Rha, Young-Hyoun;Goo, Bong-Oh;Rho, Min-Hee;Ahn, So-Youn
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.2 no.2
    • /
    • pp.143-150
    • /
    • 2007
  • Purpose : This article was a quasi-experimental study that applies to external -feedback weight-bearing training among hemiplegic patients with a stoke. Methods : It examined whether position sense and balance can improve fall efficacy and prevent a fall. The subject of study was divided in two; Experimental group had 18 people and control group had 16 people. It took 8 weeks to finish training. Experimental group provides external-feedback weight-bearing training for ten minutes after neurological treatment for 20 minutes and control group provides nerves treatment for 30 minutes. To find the effect of a fall assessed position sense, balance and fall efficacy of the lower limbs before the fact, after 4 weeks and 8 weeks. Results : According to the conclusions, external-feedback weight-bearing training to prevent a fall was more effective intervention in experimental group than in control group. Conclusion : This study suggests that external-feedback weight-bearing training is a intervention to prevent the fall of hemiplegic patients with a stroke effectively.

  • PDF

Position Tracking Control of Flexible Piezo-beam Considering Actuator Hysteresis (작동기 히스테리시스를 고려한 유연 피에조빔의 위치추적제어)

  • Nguyen, Phuong-Bac;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.129-137
    • /
    • 2010
  • This paper presents a position tracking control of a flexible beam using the piezoelectric actuator. This is achieved by implementing both feedforward hysteretic compensator of the actuator and PID feedback controller. The Preisach model is adopted to develop the feedforward hysteretic compensator. In the design of the compensator, estimated displacement of the piezoceramic actuator is used based on the limiting triangle database that results from collecting data of the main reversal curve and the first order ascending curves. Experimental implementation is conducted for position tracking control and performance comparison is made between a PID feedback controller without considering the effect of hysteresis, and a PID feedback controller integrated with the feedforward hysteretic compensator.