• Title/Summary/Keyword: Position error compensation

Search Result 251, Processing Time 0.036 seconds

Position error estimation of sub-array in passive ranging sonar based on a genetic algorithm (유전자 알고리즘 기반의 수동측거소나 부배열 위치오차 추정)

  • Eom, Min-Jeong;Kim, Do-Young;Park, Gyu-Tae;Shin, Kee-Cheol;Oh, Se-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.630-636
    • /
    • 2019
  • Passive Ranging Sonar (PRS) is a type of passive sonar consisting of three sub-array on the port and starboard, and has a characteristic of detecting a target and calculating a bearing and a distance. The bearing and distance calculation requires physical sub-array position information, and the bearing and distance accuracy performance are deteriorated when the position information of the sub-array is inaccurate. In particular, it has a greater impact on distance accuracy performance using plus value of two time-delay than a bearing using average value of two time-delay. In order to improve this, a study on sub-array position error estimation and error compensation is needed. In this paper, We estimate the sub-array position error based on enetic algorithm, an optimization search technique, and propose a method to improve the performance of distance accuracy by compensating the time delay error caused by the position error. In addition, we will verify the proposed algorithm and its performance using the sea-going data.

On-line Tool Deflection Compensation System for Precision End-milling (정밀 엔드밀링을 위한 실시간 공구처짐 보정시스템)

  • Yang, Min-Yang;Choe, Jong-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.189-198
    • /
    • 1997
  • This paper presents development of a practical tool deflection compensation system in order to reduce the machining error from the tool deflection compensation system in order to reduce the machining error from the tool deflection in the end-milling process. The devised system is a tool adapter which includes 1-axes force sensor for detecting tool deflection and 2-axes tool tilting device for adjusting tool position through computer interface on line process. Experimental in investigations for typical shaped workpieces representing various end milling situations are performed to verify the ability of the system to suppress the surface errors due to tool deflections. With the system, it is possible to get precise machining surface without any excessive machining error due to increased cutting force in more productive machining conditions.

Distance Error Compensation of Internet-based Robot System Using Position Prediction Simulator (위치 예측 시뮬레이터를 이용한 인터넷 로봇 시스템의 거리 오차 보상)

  • 이강희;이연백;김수현;곽윤근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.108-115
    • /
    • 2003
  • This paper is concerned with the development of Internet-based robot system controlled on the remote site via the Internet. In order to draw the public attention into this exciting system, we built the simple system by which a robot is moved in response to answer for the given OX quizzes. As the primary research fer Internet-based robot control, this study focuses on the development of user-friendly interface by which a beginner achieves information for a robot on the remote site from the 3D virtual simulator and the real camera image. for the compensation of Internet time delay, position prediction simulator is implemented in the user interface.

A Study on Direction Finding Accuracy Analysis for Airborne ESM (항공용 전자전장비의 방향탐지 정확도 분석기법)

  • Lee, Young-Joong;Kim, In-Seon;Park, Joo-Rae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.63-73
    • /
    • 2008
  • The helicopter position, heading data and the direction finding data of ESM are essentially required to compensate the parallax and analyze the direction finding accuracy of heliborne ESM in flight test phase. In the case of the long test range compared with small platform like as LYNX helicopter and Jisim Island test site, the parallax compensation for direction finding accuracy calculation and GPS position error can be neglected. In this paper, the direction finding accuracy on the basis of helicopter propeller was calculated by coordinate changing between helicopter and transmitting antenna from WGS84 coordinate to navigation coordinate using helicopter position and direction finding data.

A Study on Improved Mechanism of AGV System (AGV시스템의 메커니즘 개량화 연구)

  • Song, Jun-Yeop;Lee, Seung-U;Kim, Gap-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.132-139
    • /
    • 2001
  • In this research, we have developed a load/unload device capable of correcting the position automatically. Characteristic technologies such as compensation, control, guidance and communication have been modified and implemented on an existing electromagnetic guided AGV, helping to realize open system and distributed cooperation. We have applied the developed AGV with remote control and heterogeneous load/unload mechanisms in a machining system composed of various equipment such as machining centers, CMN and AS/RS and found that the AGV provided position error within $\pm$2mm.

  • PDF

A fuzzy-logic controller for a differential-drive mobile robot (이동로봇을 위한 퍼지로직 제어기)

  • 박영민;김대영;한상완;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.532-535
    • /
    • 1997
  • This paper describes the design of a fuzzy-logic controller for a differential-drive mobile robots. This controller uses absolute position information to modify control parameters to compensate the orientation error. CC-Control method is compensated for the internal error by wheel encoders and the fuzzy-logic control provides compensation for external errors. The validities of the proposed scheme is evaluated using simulation.

  • PDF

A Neutral-Voltage-Compensated Sensorless Control of Brushless DC Motor

  • Won, Chang-Hee;Song, Joong-Ho;Ick Choy;Lim, Myo-Taeg
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.59-64
    • /
    • 2003
  • This paper presents a new rotor position estimation method for brushless DC motors. The estimation error of the rotor position clearly provokes the phase shift angle misaligned between the phase current and the back-EMF waveforms, which causes torque ripple in brushless DC motor drives. Such an estimation error can be reduced with the help of the proposed neutral-voltage-based estimation method, which is structured as a closed loop observer. A neutral voltage appearing during the normal mode of the inverter operation is found to be an observable and control table measure, which can be used for estimating an exact rotor position. This neutral voltage is obtained from the DC-link current, the switching logic, and the motor speed values. The proposed algorithm, which can be easily implemented by using a single DC-link current and the motor terminal voltage sensors, is verified by simulation and experiment results.

Position Error Correction Algorithm for Improvement of Positioning Accuracy in BLE Beacon Systems (BLE 비콘 시스템에서 측위 정밀도 향상을 위한 위치 오차 보정 알고리즘)

  • Jung, Jun Hee;Hwang, Yu Min;Hong, Seung Gwan;Kim, Tae Woo;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.63-67
    • /
    • 2016
  • Recently, BLE beacons are widely used in indoor precision positioning systems because of their low battery consumption and low infrastructure cost. However, existing BLE beacon based indoor positioning algorithms are difficult to compensate for position errors due to the user's moving speed. Therefore, we proposed a position error correction algorithm that combines bounced cancellation and minimum distance maintenance algorithm with a positioning error correction method using direction vectors. Experimental results show that the proposed algorithm guarantees superior positioning performance than the existing indoor positioning algorithm and also improves the performance of position error compensation.

A Novel Neural Network Compensation Technique for PD-Like Fuzzy Controlled Robot Manipulators (PD 기반의 퍼지제어기로 제어된 로봇의 새로운 신경회로망 보상 제어 기술)

  • Song Deok-Hee;Jung Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.524-529
    • /
    • 2005
  • In this paper, a novel neural network compensation technique for PD like fuzzy controlled robot manipulators is presented. A standard PD-like fuzzy controller is designed and used as a main controller for controlling robot manipulators. A neural network controller is added to the reference trajectories to modify input error space so that the system is robust to any change in system parameter variations. It forms a neural-fuzzy control structure and used to compensate for nonlinear effects. The ultimate goal is same as that of the neuro-fuzzy control structure, but this proposed technique modifies the input error not the fuzzy rules. The proposed scheme is tested to control the position of the 3 degrees-of-freedom rotary robot manipulator. Performances are compared with that of other neural network control structure known as the feedback error learning structure that compensates at the control input level.

Compensation of SDINS Navigation Errors Using Line-Of-Sight Vector (시선벡터를 이용한 관성항법장치의 보정기법)

  • Lim, You-Chol;Yim, Jong-Bin;Lyou, Joon
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2521-2524
    • /
    • 2003
  • Since inertial sensor errors which increase with time are caused by initial orientation error and sensor errors (accelerometer bias and gyro drift bias), the accuracy of these devices, while still improving, is not adequate for many of today's high-precision, long-duration sea, aircraft, and long-range missile missions. This paper presents a navigation error compensation scheme for Strap-Down Inertial Navigation System (SDINS) using Line-Of-Sight(LOS) vector from star sensor. To be specific, SDINS error model and measurement equation are derived, and Kalman filter is implemented. Simulation results show the bounded-ness of position and attitude errors.

  • PDF