• 제목/요약/키워드: Position error compensation

검색결과 251건 처리시간 0.03초

Compensation of Position Error due to Amplitude Imbalance in Resolver Signals

  • Hwang, Seon-Hwan;Kwon, Young-Hwa;Kim, Jang-Mok;Oh, Jin-Seok
    • Journal of Power Electronics
    • /
    • 제9권5호
    • /
    • pp.748-756
    • /
    • 2009
  • This paper presents a compensation algorithm for position error due to an amplitude imbalance between resolver output signals. Resolvers are typically used to obtain absolute position information for motor drive systems in severe environments. Position error is caused by an amplitude imbalance of the resolver output signals. As a result, the d- and q-axis currents of synchronous reference frame have periodic ripples in the stator fundamental frequency in permanent magnet synchronous motor (PMSM) drive systems. Therefore, this paper proposes a compensation algorithm to reduce the position error generated by the amplitude imbalance. The proposed method does not require any additional hardware, and reduces computation time with a simple integral operation according to rotor position. In addition, the position error can be directly compensated for by the estimated position error. The effectiveness of the proposed compensation algorithm is verified through several simulations and experiments.

2상 하이브리드 스테핑 모터의 벡터 제어 시 초기 각 오차 및 토크 리플 보상 (Compensation of Initial Position Error and Torque Ripple in Vector Control of Two-phase Hybrid Stepping Motors)

  • 김도현;김상훈
    • 전력전자학회논문지
    • /
    • 제27권6호
    • /
    • pp.481-488
    • /
    • 2022
  • This study proposes compensation methods for the initial position error and torque ripple in vector control of two-phase hybrid stepping motors. Stepping motors have an asymmetrical structure due to misalignment, such as the eccentricity generated by the manufacturing and assembly process. When vector control is applied using the position information measured by an incremental encoder attached to the rotor shaft of such stepping motors, the following problems occur. First, an initial position error occurs during the forced excitation process for the initial rotor position alignment. Second, torque ripple corresponding to the mechanical rotation frequency is generated. In this study, these non-ideal phenomena that occur in vector control of the stepping motor are analyzed, and compensation methods are proposed to eliminate them. The validity of the proposed initial position error and torque ripple compensation methods is verified through experiments on a two-phase hybrid stepping motor drive system.

2차원 PSD 를 이용한 이동로보트의 위치 보정에 관한 연구 (A Study on the Position Compensation of a Mobile Robot Using 2D Position Sensitive Detector)

  • 노영식;이기현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.833-836
    • /
    • 1995
  • The Position Sensitive Detector(PSD) is an useful which can be used to measurement the position of an incidence light in detail and in real-time. In this paper, light sources, to be predefinded positions, are used as landmarks and the 2-D PSD signals are used to compensate the position of a running mobile robot. To induce the position compensation algorithm, first, we inspect the error factor, make the error model, and evaluate the error covariance matrix between the real position and estimated position in dead reckoning system. Next we obtain an optimal position compensation algorithm to update the estimated position using extended Kalman filler by the relation of the external light position and it's PSD signal. Through the simulation of navigating a robot the effectiveness of the proposed method is confirmed.

  • PDF

기준물을 이용한 공작기계 위치오차 보정기술에 관한 연구 (A Study on the Error Compensation of Machine Tool Position Using Reference Artifact and On-Machine Probe)

  • 조남규;박재준;정성종
    • 대한기계학회논문집A
    • /
    • 제25권9호
    • /
    • pp.1317-1324
    • /
    • 2001
  • In this paper, a methodology of geometrical error identification and compensation for NC machine tool position is developed. We propose a reference artifact with measuring the geometry of coordinate system for compensating linear scale error of NC machine. The coordinate system of the NC machine could be compensated successfully with the information obtained by measuring the reference artifact and our compensation algorithm. Monte Carlo simulation is used to evaluate coordinate referencing ability and, the uncertainties of the machine tool position is estimated and observed through the compensation process by simulation.

박판성형 변형률 측정 오차보정에 관한 연구 (Study on the Error Compensation in Strain Measurement of Sheet Metal Forming)

  • 한병엽;차지혜;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.270-273
    • /
    • 2003
  • The strain measurement of the panel in the sheet metal forming is essential work which provides experimental data needed to die design, process design, and product inspection. To measure efficiently the complex geometry strain, the 3-dimensional automative strain measurement system, which has high accuracy in theory, but has some 3∼5% errors in practice, is often used. The object of this study is to develop the error compensation technology to eliminate the strain, errors resulted when formed panels are measured using an automated strain measurement system. To achieve the study object, the position error calibration method correcting coordinates of the grid node recognized by a camera using error functions is suggested. Then the position errors were found by calculating the difference in the position of the cube node between real coordinates and measured coordinates in toms of node coordinates and the error calibration equations were derived by regressing the position errors. In order to show the validation of the suggested position error calibration method, finite element analysis and current calibration method was performed for the initial-blankformed.

  • PDF

3자유도 병렬기구의 위치오차 보정기술에 관한 연구 (A Study on the Error Compensation of Three-DOF Translational Parallel Manipulator)

  • 신욱진;조남규
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.44-52
    • /
    • 2004
  • This paper proposed a error compensation methodology for three-DOF translational parallel manipulator. The proposed method uses CMM (coordinate measuring machine) as metrology equipment to measure the position of end-effector. To identify the transform relationships between the coordinate system of the parallel manipulator and the CMM coordinate system, a new coordinate referencing (or coordinate system identification) technique is presented. By using this technique, accurate coordinate transformation relationships are efficiently established. According to these coordinate transformation relationships, an equation to calculate the compensating error components at any arbitrary position of the end-effector is derived. In this paper, Monte Carlo simulation method is applied to simulate the compensation process. Through the simulation results, the proposed error compensation method proves its effectiveness and feasibility.

3 자유도 위치 결정 기구의 위치 오차 평가 및 보정법에 대한 불확도 분석 (An Uncertainty Analysis of a Compensation Method for the Positioning Error of Three-DOF Manipulator)

  • 박재준;엄형욱;조남규
    • 한국정밀공학회지
    • /
    • 제23권7호
    • /
    • pp.51-58
    • /
    • 2006
  • This study analyzes the uncertainty of the compensation method of a sensing error of three-DOF measuring system. This compensation method utilizes a reference coordinate system using a three point by moving a position of an endpoint of a three-DOF manipulator. The coordinate transformation between the three-DOF manipulator and the measuring system is identified by the reference coordinate system. According to the concept of this compensation method, each positioning error at any position of the end-point of the manipulator is derived. Uncertainty analyses of the compensation values on the basis of sensitivity analysis and Monte Carlo simulation are used to investigate a feasibility and effectiveness of the compensation method.

5축 CNC 공작기계의 오차합성모델링 및 보정 알고리즘 (Error Synthesis Modeling and Compensation Algorithm of a 5-Axis CNC Machine Tool)

  • 양승한;이철수
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.122-129
    • /
    • 1999
  • A 5-axis CNC machine tool is more useful compared with a 3-axis machine tool, because the position and the orientation of a tool tip can be controlled simultaneously. Unlike the 3-axis machine tool, the 5-axis machine tool has the volumetric position error and volumetric orientation error due to the quasi-static error of each machine tool joint which is a major source of machined part error. So, the generalized error synthesis model of the 5-axis CNC machine tool was developed to predict and to compensate for the volumetric position error and the volumetric orientation error. It was proposed that a compensation algorithm to correct simultaneously the volumetric position error and the volumetric orientation error of the 5-axis CNC machine by error inverse kinematic.

  • PDF

공작기계 오차 모델링과 보정에 관한 연구 (On Error Modeling and Compensation of Machine Tools)

  • 송일규;최영
    • 한국정밀공학회지
    • /
    • 제13권1호
    • /
    • pp.98-107
    • /
    • 1996
  • The use of composite hyperpatch model is proposed to predict a machine tool positional error over the entire work space. This is an appropriate representation of the distorted work space. This model is valid for any configuration of 3-axis machine tool. Tool position, which is given NC data or CL data, contains error vector in actual work space. In this study, off-line compensation scheme was investigated for tool position error due to inaccuracy in machine tool structure. The error vector in actual work space is corrected by the error model using Newton-Raphson method. The proposed error compensation method shows the possibility of improving machine accuracy at a low cost.

  • PDF

기준물을 이용한 공작기계 위치오차 보정기술에 관한 연구 (A Study on the Error Compensation of Machine Tool Position Using Reference Artifact and On-machine probe)

  • 조남규;박재준;정성종
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.20-25
    • /
    • 2000
  • In this paper, a methodology of geometrical error identification and compensation for NC machine tool position. We have proposed a reference artifact with which, in measuring the coordinate system of NC machine, the robust coordinate systems are given. The coordinate system of the NC machine could be compensated successfully with the information obtained by measuring the reference artifact and our compensation algorithm. Monte Carlo simulation is used to evaluate coordinate referencing ability and, the uncertainties of the machine tool position is estimated and observed through the compensation process by simulation.

  • PDF