• Title/Summary/Keyword: Position detection of rotor

Search Result 104, Processing Time 0.03 seconds

Performance Test of Sensorless Speed Control Logic for Gas Turbine Starter (가스터빈 기동장치 센서리스 속도제어로직 성능실험)

  • Ryu, Hoseon;Moon, jooyoung;Lee, Uitaek;Lee, Joohyun;Kang, Yunmo;Park, Manki
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.2
    • /
    • pp.69-75
    • /
    • 2017
  • The gas turbine static starter rotates the stationary synchronous machine by the interaction of the rotor and the stator. The detection from the initial position of the rotor has been an important issue to drive with optimum torque. Previously, the gas turbine starter was used by attaching the encoder to the synchronous machine, but the position and velocity of the rotor have been estimated by sensor-less method until recently due to the difficulty in attaching and detaching and damage caused by the shaft voltage noise. In this paper, Rotor initial(stationary state) position estimation, forced commutation control(speed less than 10%), and natural commutation control(speed more than 10%) method using magnetic flux with integrated terminal voltage were presented and the sensor-less speed control performance was verified. As a result of making and evaluating the 29 kVA synchronous machine and the starting device, the performance of each control mode was satisfactory. Furthermore, the applied technology is expected to be used for the development of the gas turbine starter of tens of MW class and the field application.

Electromagnetic Characteristics Analysis of Generator with the shorted turn rotor field winding (발전기 회전자 턴 단락 현상에 따른 전자계 특성 해석)

  • Jo, Won-Yeong;Kim, Byeong-Guk;Jo, Yun-Hyeon;Hwang, Don-Ha;Gang, Dong-Sik;Kim, Yong-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.35-37
    • /
    • 2005
  • Large generators are subject to high mechanical and electrical stress which may lead to deterioration of the insulation. The rotors, in particular, may develop short circuits particularly and there is a need for the operators to be aware of this situation. In this paper, the electromagnetic characteristics of the generator with shorted turns in rotor field winging is analyzed by FEM and the detection algorithm method of the shorted turn rotor slot position is proposed.

  • PDF

The position detecting method in SRM using pattern of phase current (SRM의 상전류 패턴을 이용한 회전자 위치 검출기법)

  • Kim, Tae-Hyoung;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.558-561
    • /
    • 2005
  • This paper describes a novel method of detecting excitation position in switched reluctance motor(SRM) drive. Some strategies of position sensorless control methods for the motor include the measurement of phase current and applied pulse voltage in an unexcited phase is suggested. The principle of the estimation of a rotor position is based on the detection of inductance by pulse currents. This sensorless method is very simple to detect excitation position estimation and gives efficient control of drive system. Suggested method is verified by some simulations.

  • PDF

The Position Sensorless Control of SRG using the Instantaneous Flux (순시자속을 이용한 위치센서 없는 SRG의 운전)

  • 김영조;오승보;김영석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.472-481
    • /
    • 2002
  • In this paper, the instantaneous flux Is applied to control the position of the SRG (Switched Reluctance Generator) without position sensor. The position information of the rotor is required in the drive of SRG. These data are generally obtained by a shaft encoder or resolver. In some cases, the EMI(Electro Magnetic Interference), vibration, thermal, and humidity environments may cause the difficulties in maintaining the satisfactory performance for the position detection. Therefore, the elimination of the position and speed sensor is needed. In this paper, a new method for the position estimation of the SRG is proposed. The estimation of the flux is calculated by using the measured voltage and current. The rotor position gets from the flux profile. The output voltage is also controlled constantly by PR control algorithm. These methods are verified by computer simulations md experiments using DSP. Experimental results certificate that the proposed method is able to control the SRG stable, and keep the output voltage constant in spite of changing of the load.

Proposed New Encoders Using a Hybrid approach (하이브리드방식을 이용한 새로운 엔코더의 제안)

  • Kim, Young-Su;Kwon, Soon-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.371-372
    • /
    • 2016
  • In this paper, the encoder of the hybrid type which can use a single position sensor in order to overcome the use of multiple signal lines and the reliability reduction for the location information acquisition caused by using a plurality of position detectors to acquire the position information of the rotor offer. Encoder of the proposed method was the replacement location information generating function by the plurality of sensors to the Capture function of the shape and the microcomputer of the encoder plate. Capture of the DSP function was verified through experiments using the in order to verify the validity of the detection by the proposed method and the hybrid encoder position prototyping, a means.

  • PDF

Position Estimation Method of Single-Phase Hybrid SRM (단상 하이브리드 SRM의 위치 추정 방법)

  • Tang, Ying;Zhang, Fengge;Lee, Donghee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.737-739
    • /
    • 2015
  • In this paper, a novel method of sensorless control scheme is proposed to apply on a single phase hybrid SRM used in high speed operation. The proposed method utilizes beneficially permanent magnet field whose performance is motor parameter independent to estimate the rotor position. Also, the current slope is adopted to complete the sensorless control when the motor running with heavy torque at high speed condition. Through this approach, the adjustable turn on/off position can be achieved without prior knowledge of inductance profile which is always employed by many sensorless schemes. And this paper may offer an available method to do the sensorless control in hybrid SRM used for high speed running.

  • PDF

Position Sensor Fault Tolerant Control of Permanent Magnet Synchronous Generator (영구자석 동기발전기의 위치센서 고장 회피 제어)

  • Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.351-357
    • /
    • 2011
  • Rotor position is essentially required for vector control of permanent magnet synchronous generator(PMSG) and position sensor such as encoder are generally used for the purpose of position sensing. However, the use of position sensor degrades reliability of PMSG control system. This paper presents position sensor fault tolerant control method for PMSG control system. Sensorless position estimator based on extended electromotive force(EMF) is operated in parallel with sensored vector control to provide rapid reconfiguration capability to sensorless vector control at the moment of position sensor fault detection. Experimental results show the effectiveness of the proposed method.

Ultrasonic Signal Processing Algorithm for Crack Information Extraction on the Keyway of Turbine Rotor Disk (터빈 로터 디스크 키웨이의 초음파 신호로부터 균열정보의 추출을 위한 신호처리 알고리즘의 개발)

  • Lee, Jong-Kyu;Seo, Won-Chan;Park, Chan;Lee, Jong-O;Son, Young-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.493-500
    • /
    • 2009
  • An ultrasonic signal processing algorithm was developed for extracting the information of cracks generated around the keyway of a turbine rotor disk. B-scan images were obtained by using keyway specimens and an ultrasonic scan system with x-y position controller. The B-scan images were used as input images for 2-Dimensional signal processing, and the algorithm was constructed with four processing stages of pre-processing, crack candidate region detection, crack region classification and crack information extraction. It is confirmed by experiments that the developed algorithm is effective for the quantitative evaluation of cracks generated around the keyway of turbine rotor disk.

Development of Drive for BLDC Motor Using Resolver (레졸버를 이용한 BLDC 모터의 드라이브 개발)

  • Lee, G.Y.;Lee, C.H.;Kim, S.B.;Kwon, S.J.
    • Journal of Power System Engineering
    • /
    • v.3 no.2
    • /
    • pp.64-69
    • /
    • 1999
  • The paper shows a result for development of BLDC motor drive by using a resolver as position detection sensor. The developed drive use a method detecting rotor position based on HSI interrupt function of microprocessor without a specialized counting circuit. The algorithm generating three-phase PWM wave to change switching voltage and current is realized based on single chip microprocessor. The PWM generating part and position counting circuit are realized by software technique without usage of conventional analogue circuit or object-oriented chips. So the drive system become compact. The effectiveness of the developed drive is verified by experimented results of speed response for step reference input.

  • PDF

Sensor Fault Detection, Localization, and System Reconfiguration with a Sliding Mode Observer and Adaptive Threshold of PMSM

  • Abderrezak, Aibeche;Madjid, Kidouche
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1012-1024
    • /
    • 2016
  • This study deals with an on-line software fault detection, localization, and system reconfiguration method for electrical system drives composed of three-phase AC/DC/AC converters and three-phase permanent magnet synchronous machine (PMSM) drives. Current sensor failure (outage), speed/position sensor loss (disconnection), and damaged DC-link voltage sensor are considered faults. The occurrence of these faults in PMSM drive systems degrades system performance and affects the safety, maintenance, and service continuity of the electrical system drives. The proposed method is based on the monitoring signals of "abc" currents, DC-link voltage, and rotor speed/position using a measurement chain. The listed signals are analyzed and evaluated with the generated residuals and threshold values obtained from a Sliding Mode Current-Speed-DC-link Voltage Observer (SMCSVO) to acquire an on-line fault decision. The novelty of the method is the faults diagnosis algorithm that combines the use of SMCSVO and adaptive thresholds; thus, the number of false alarms is reduced, and the reliability and robustness of the fault detection system are guaranteed. Furthermore, the proposed algorithm's performance is experimentally analyzed and tested in real time using a dSPACE DS 1104 digital signal processor board.