• Title/Summary/Keyword: Position control accuracy

Search Result 664, Processing Time 0.031 seconds

Enhanced Indoor Positioning Algorithm Using WLAN RSSI Measurements Considering the Relative Position Information of AP Configuration (AP 상대위치 정보를 고려한 향상된 WLAN RSSI 기반 실내 측위 알고리즘)

  • Kim, A Sol;Hwang, Jungyu;Park, Joongoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.146-151
    • /
    • 2013
  • With the development of mobile internet, requirements of positioning accuracy for the LBS (Location Based Service) are becoming more and more higher. The LBS is based on the position of each mobile device. So, it requires a proper acquisition of accurate user's indoor position. Thus indoor positioning technology and its accuracy is crucial for various LBS. In general, RSSI (Received Signal Strength Indicator) measurements are used to obtain the position information of mobile unit under WLAN environment. However, indoor positioning error increases as multiple AP's configurations are becoming more complex. To overcome this problem, an enhanced indoor localization method by AP (Access Point) selection criteria adopting DOP (Dilution of Precision) is proposed.

A Design of Adaptive Controller for Transportation System with Dynamic Friction

  • Lee, Jin-Woo;Seo, Jeon-Hyun;Han, Seung-Hoon;Lee, Kwon-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.199-204
    • /
    • 2006
  • In this paper, we propose an adaptive control algorithm to improve the position accuracy and reduce the nonlinear friction effects for linear motion servo system. Especially, the considered system includes not only the variation of the mass of the mover but also the friction change by the normal force. To adapt to these problems, we designed the controller with the mass estimator and the compensator by observing the variation of normal force. Finally, the numerical simulation results are presented in order to show the effectiveness of the proposed method to improve the position accuracy compared to other control methods.

  • PDF

The simulation for error analysis of a large scale laser digitizer system

  • Fujimoto, Ikumatsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.440-445
    • /
    • 1993
  • A two dimensional large scale laser digitizer with a cordless cursor was developed. The coordinate detecting scheme of this digitizer is fundamentally based on the triangulation method, in which two laser-rays are scanned by the rotating plane mirros, reflected backward by the cursor, reflected again by the rotating mirrors, and detected by optical sensors. From angles in which the cursor reflections are detected, we can determine the position of the cursor. But this method involves several problems about optical alignment and its calibration especially when it is applied to a large scale digitizer. In this paper, especially we propose simulation for error analysis with connection to angles measured at five control points which are needed to decide an appropriate model for calculating coordinates and optimal simulation for deciding the position of five control points to give the better coordinate accuracy. In this way, we realized the on-site calibration and on-site insurance of measurement accuracy with our appropriate model for calculating coordinates. The time required for on-site calibration is within 5 minutes and the average accuracy of 4m * 3m digitizer is about .+-.0.12mm.

Sub-micron Control Algorithm for Grinding and Polishing Aspherical Surface

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.386-393
    • /
    • 2008
  • A position control method for interpolating aspherical grinding and polishing tool path was reviewed and experimented in a nano precision machine. The position-base algorithm was reformed from the time-base algorithm, proposed in the previous study. The characteristics of the algorithm were in the velocity control loop with position feedback. The aspherical surface was divided by an interval at which each velocity and acceleration were calculated. The theoretical velocity was corrected by position error during processing. In the experiment, a machine was constructed and nano-scale linear encoders were installed at each axis. Relation between process parameters and the variation of position error was monitored and discussed. The best result from optimized parameters showed that the accuracy was 150nm and improved from the previous report.

Microstep Drive of 2 Phase 8 Pole HB Type Linear Pulse Motor for Precise Position Control (2상 8극 HB형 리니어 펄스 모터의 정밀위치 제어를 위한 미세스텝 구동)

  • Kim, Seong-Heon;Lee, Eun-Ung;Lee, Dong-Ju;Gu, Tae-Man
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.12
    • /
    • pp.671-678
    • /
    • 1999
  • In this study, it has been aimed that the accuracy of position control be increased by microstep drive to the 2 phase 8 pole HB type prototype of linear pulse motor of which winding are applied sine wave current and the vibration and noise in the lower speed region be decreased. The fixed off-time method which controls the exciting current bandwidth, was applied to the microstep current controller. When the LPM was driven 1/8 microstep its accuracy of position was 0.109[mm] (=tooth pitch 3.5[mm] ). Also, the elimination method of harmonics in the static thrust force is proposed. It was confirmed that the position error range of the prototype LPM was $\pm$0.2[mm].

  • PDF

A Method of Accurate Position Control with a Pneumatic Cylinder Driving Apparatus

  • Jang Ji-Seong;Byun Jung-Hoan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.993-1001
    • /
    • 2006
  • In this paper, a method of accurate position control using a pneumatic cylinder driving apparatus is presented. To overcome the effect of friction force and transmission line, low friction type cylinder applied externally pressurized air bearing structure is used and two control valves attached both side of the cylinder directly. To compensate nonlinear characteristics of control valves, linearized control input derived from the relation between control input and effective area of control valve, and dither signal are applied to the valve. The controller applied to the pneumatic cylinder driving apparatus is composed of a state feedback controller and a disturbance observer. Experimental results show that the effectiveness of the proposed method and position control error of $5{\mu}m$ accuracy could be obtained easily.

Mathematical Analysis and Simulation Based Survey on Initial Pole Position Estimation of Surface Permanent Magnet Synchronous Motor

  • Kim, Tae-Woong;Wheeler, Patrick;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.499-506
    • /
    • 2009
  • In this paper, the initial pole-position estimation of a surface (non-salient) permanent magnet synchronous motor is mathematically analyzed and surveyed on the basis of simulation analysis, and developed for accurate servo motor drive. This algorithm is well carried out under the full closed-loop position control without any pole sensors and is completely insensitive to any motor parameters. This estimation is based on the principle that the initial pole-position is simply calculated by the reverse trigonometric function using the two feedback currents in the full closed-loop position control. The proposed algorithm consists of the predefined reference position profile, the information of feedback currents, speed, and relative position, and the reverse trigonometric function for the initial-pole position estimation. Comparing with the existing researches, the mathematical analysis is introduced to get a more accurate initial pole-position of the surface permanent magnet motor under the closed-loop position control. It is found that the proposed algorithm can be easily applied in servo drive applications because it satisfies the following user's specifications; accuracy and moving distance.

A Study on the Position Detection Device for a Hybrid Type Linear Pulse Motor (HB형 LPM의 위치검출장치에 관한 기초연구)

  • 신춘식;김남호;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.31-36
    • /
    • 1996
  • In recent years, as the electonic industry has become more advanced, the LPM(Linear Pulse Motor) has appeared in a wide range of applications because of easier control, operation by open-loop control, high positioning accuracy, and retrieval of position or velocity data by the input pulses. In this study, we deal with the development of a position detection device attached to a hybrid LPM in our laboratory. Precise position detection signals could be sensed by the synchronous rectifier method from the LPM stator scale. In addition, we can keep the amplitude constant by using an AGC(Automatic Gain Control) circuit. Experimental results show that the position data is good enough to perform the LPM position control.

  • PDF

KOMPSAT-1 Satellite Orbit Control using GPS Data

  • Lee, Jin-Ho;Baek, Myuog-Jin;Koo, Ja-Chun;Yong, Ki-Lyuk;Chang, Young-Keun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.2
    • /
    • pp.43-49
    • /
    • 2000
  • The Global Positioning System (GPS) is becoming more attractive navigation means for LEO (Low Earth Orbit) spacecraft due to the data accuracy and convenience for utilization. The anomalies such as serious variations of Dilution-Of-Precision (DOP), loss of infrequent 3-dimensional position fix, and deterioration of instantaneous accuracy of position and velocity data could be observed, which have not been appeared during the ground testing. It may cause lots of difficulty for the processing of the orbit control algorithm using the GPS data. In this paper, the characteristics of the GPS data were analyzed according to the configuration of GPS receiver such as position fix algorithm and mask angle using GPS navigation data obtained from the first Korea Multi-Purpose Satellite (KOMPSAT). The problem in orbit tracking using GPS data, including the infrequent deterioration of the accuracy, and an efficient algorithm for its countermeasures has also been introduced. The reliability and efficiency of the modified algorithm were verified by analyzing the effect of the results between algorithm simulation using KOMPSAT flight data and ground simulator.

  • PDF

Accurate Control Position of Belt Drives under Acceleration and Velocity Constraints

  • Jayawardene, T.S.S.;Nakamura, Masatoshi;Goto, Satoru
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.474-483
    • /
    • 2003
  • Belt drives provide freedom to position the motor relative to the load and this phenomenon enables reduction of the robot arm inertia. It also facilitates quick response when employed in robotics. Unfortunately, the flexible dynamics deteriorates the positioning accuracy. Therefore, there exists a trade-off between the simplicity of the control strategy to reject time varying disturbance caused by flexibility of the belt and precision in performance. Resonance of the system further leads to vibrations and poor accuracy in positioning. In this paper, accurate positioning of a belt driven mechanism using a feed-forward compensator under maximum acceleration and velocity constraints is proposed. The proposed method plans the desired trajectory and modifies it to compensate delay dynamics and vibration. Being an offline method, the proposed method could be easily and effectively adopted to the existing systems without any modification of the hardware setup. The effectiveness of the proposed method was proven by experiments carried out with an actual belt driven system. The accuracy of the simulation study based on numerical methods was also verified with the analytical solutions derived.