• Title/Summary/Keyword: Position control accuracy

Search Result 664, Processing Time 0.031 seconds

Analysis of Estimated Position Error by Magnetic Saturation and Compensating Method for Sensorless Control of PMSM (자속 포화에 의한 PMSM 센서리스 위치 추정 오차 분석 및 보상 기법)

  • Park, Byung-Jun;Gu, Bon-Gwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.3
    • /
    • pp.430-438
    • /
    • 2019
  • For a pump or a compressor motor, a high periodic load torque variation is induced by the mechanical works, and it causes system vibration and noise. To minimize these problems, load torque compensation method, injecting periodic torque current, could be utilized. However, with the sensorless control method, which is usually utilized in the pump and compressor for low cost, the periodic torque current degrades the accuracy of the rotor position estimation owing to the inductance variation. This paper analyzes the rotor position and speed estimation error of sensorless control method with constant motor parameters under period loading. Assuming the constant speed by the accurate load torque compensation, the speed error equation is derived in frequency domain with inductance depending on the stator current. Further, it is also shown that the rotor position error could be minimized by compensating the inductance variation. The simulation and experimental results verify that the derived speed error model and the validity of the inductance compensation method.

Development of a Camera-based Position Measurement System for the RTGC with Environment Conditions (실외 주행환경을 고려한 카메라 기반의 RTGC 위치계측시스템 개발)

  • Kawai, Hideki;Kim, Young-Bok;Choi, Yong-Woon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.892-896
    • /
    • 2011
  • This paper describes a camera-based position measurement system for automatic tracking control of a rubber Tired Gantry Crane (RTGC). An automatic tracking control of RTGC depends on the ability to measure its displacement and angle from a guide line that the RTGC has to follow. The measurement system proposed in this paper is composed of a camera and a PC that are mounted on the right upper between front and rear tires of the RTGC's side. The measurement accuracy of the system is affected by disturbances such as cracks and stains of the guide line, shadows, and halation from the light fluctuation. To overcome the disturbances, both side edges of the guide line are detected as two straight lines from an input image taken by the camera, and parameters of the straight lines are determined by using Hough transform. The displacement and angle of the RTGC from the guide line can be obtained from these parameters with the robustness against the disturbances. From the experiments with the disturbances, we found the accurate displacement and the angle from the guide line that have the standard deviations of 0.95 pixels and 0.22 degrees, respectively.

Multi-system vehicle formation control based on nearest neighbor trajectory optimization

  • Mingxia, Huang;Yangyong, Liu;Ning, Gao;Tao, Yang
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.587-597
    • /
    • 2022
  • In the present study, a novel optimization method in formation control of multi -system vehicles based on the trajectory of the nearest neighbor trajectory is presented. In this regard, the state equations of each vehicle and multisystem is derived and the optimization scheme based on minimizing the differences between actual positions and desired positions of the vehicles are conducted. This formation control is a position-based decentralized model. The trajectory of the nearest neighbor are optimized based on the current position and state of the vehicle. This approach aids the whole multi-agent system to be optimized on their trajectory. Furthermore, to overcome the cumulative errors and maintain stability in the network a semi-centralized scheme is designed for the purpose of checking vehicle position to its predefined trajectory. The model is implemented in Matlab software and the results for different initial state and different trajectory definition are presented. In addition, to avoid collision avoidance and maintain the distances between vehicles agents at a predefined desired distances. In this regard, a neural fuzzy network is defined to be utilized in conjunction with the control system to avoid collision between vehicles. The outcome reveals that the model has acceptable stability and accuracy.

Improvements on the Three-Dimensional Positioning of High Resolution Stereo Satellite Imagery (고해상도 스테레오 위성영상의 3차원 정확도 평가 및 향상)

  • Jeong, In-Jun;Lee, Chang-Kyung;Yun, Kong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.617-625
    • /
    • 2014
  • The Rational Function Model has been used as a replacement sensor model in most commercial photogrammetric systems due to its capability of maintaining the accuracy of the physical sensor models. Although satellite images with rational polynomial coefficients have been used to determine three-dimensional position, it has limitations in the accuracy for large scale topographic mapping. In this study, high resolution stereo satellite images, QuickBird-2, were used to investigate how much the three-dimensional position accuracy was affected by the No. of ground control points, polynomial order, and distribution of GCPs. As the results, we can confirm that these experiments satisfy the accuracy requirements for horizontal and height position of 1:25,000 map scale.

Development of High Efficiency Solar Power Generation with Two-axis Tracking Control (양축 추적제어에 의한 고효율 태양열 발전시스템의 개발)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1721-1726
    • /
    • 2011
  • Recently, interest in renewable energy is increased due to exhaustion of fossil fuel and environmental pollution all over the world, therefore the solar power generation using solar energy is many researched. The solar power generation is required solar tracking control and high concentration solar thermal collector because generation performance is depended on concentrator efficiency. This paper proposes high efficiency solar power generation with two-axis tracking control using dish-type solar thermal collector that has excellent thermal collector performance and tracking algorithm that can be accurately tracked solar position. This paper proves validity through analysis with accuracy of tracking algorithm and generating efficiency.

A study on robustness of automatic seam tracking system (용접선 자동추적장치의 강인성에 관한 연구)

  • 강희신;조택동;양상민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.775-778
    • /
    • 1996
  • In this research, the robustness of a seam tracking for the automatic welding system is studied. The laser displacement sensor is used as a seam finder. X-Y moving table drived by ac servo motor controls the position and velocity of the torch-and-sensor part. However, dc servo motor is used to control the position and velocity of the torch. The sensor locates ahead of torch to preview the weld line, and brings about the inaccuracy on the torch tracking. To enhance the robustness on this system against the influence of disturbances and model uncertainty, H$\_$.inf./ control is applied to the angular motion of torch. The simulation shows that the tracking accuracy improved significantly. Also, experimental results give a good performance of H$\_$.inf./ control strategy to the automatic seam tracking system for the welding.

  • PDF

Sliding Mode Control using Neural Network for a Robot Manipulator (로봇 매니플레이터를 위한 신경회로망을 이용한 슬라이딩 모드 제어)

  • 박양수;박윤명;최부귀
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.89-94
    • /
    • 2001
  • The position control accuracy of a robot manipulator is significantly deteriorated when a long arm robot is operated at a high speed. This paper presents a very simple sliding mode control which eliminates multiple mode residual vibration in a robot manipulator. The neural network is used to avoid that sliding mode condition is deviated due to the change of system parameter and disturbance. This paper is suggested control system which designed by sliding mode controller using neural network. The effectiveness of proposed scheme is demonstrated through computer simulation.

  • PDF

Improvement of LMCTS Position Accuracy using DR-FNN Controller

  • Lee, Jin Woo;Suh, Jin Ho;Lee, Young Jin;Lee, Kwon Soon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.223-230
    • /
    • 2004
  • In this paper, we will introduce a control strategy based on the permanent magnet linear synchronous motor (PMLSM) container transfer system using soft-computing algorithm. Linear motor-based container transport system (LMCTS) is horizontal transfer system for the yard automation, which has been proposed to take the place of automated guided vehicle in the maritime container terminal. LMCTS is considered as that the system is changed its model suddenly and variously by loading and unloading container. The proposed control system is consisted of two DR-FNNs that act the role of controller and system emulator. Consequently, the system had the predictable structure and an ability to adapt for a huge variation of rolling friction, detent force, and sudden changes of its weight by loading and unloading.

An Analysis on Positional Accuracy of Urban Control Point for Connecting to Supplementary Control Point (지적도근점과 연계활용을 위한 도시기준점의 위치정확도 분석)

  • Hong, Sung-Eon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.97-104
    • /
    • 2009
  • Supplementary control point and urban control point have different purpose and characteristic in the view of installation but their measurement method and permanent marker position are very similar. Therefore if we could use them by connecting those two control point, we would improve the arrangement density as well as minimizing cost of restoration from the loss of control point. So we tried to suggest the possibility of connecting these two control point and usage by analysing positional accuracy of urban control point on the base of supplementary control point in this study. The result of this study is as following. When analysing the positional accuracy of 13 urban control points of the study areas, there were RMSE of connection errors between ${\pm}8cm$ and ${\pm}11cm$ for each measurement point. The result confirmed the possibility of connecting supplementary control point to urban control point and its usage within the allowable error tolerance that the present cadastral law permits.

  • PDF

Accuracy Improvement of Stereo-Based Distance Measurement for Close Range Vessel Positioning

  • Ogura, Tadashi;Mizuchi, Yoshiaki;Kim, Young-Bok;Choi, Yong-Woon
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.27-32
    • /
    • 2015
  • This paper describes a distance measurement system with high accuracy that utilizes a stereo-based camera and a pan-tilt unit for automatically maintaining the positional relationship between a vessel and a target on the side of a facility at a close range. The measurement system offers an advantage in that it can measure the distance to a target while tracking it. In order to improve the ability to control the position of a vessel between it and a target while maintaining the distance especially at a close range, the accuracy of the measurement system has to be improved. The accuracy of the distance measured by our system is increased with revisions of the conclusively generated data of distance measurement. We verified the accuracy of our system from an experiment, which generated results that had an accuracy of 30 mm for distances in the range between 2-8 m.