• Title/Summary/Keyword: Position control accuracy

Search Result 664, Processing Time 0.032 seconds

A Study on the Stabilization Force Control of Robot Manipulator

  • Hwang, Yeong Yeun
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • It is important to control the high accurate position and force to prevent unexpected accidents by a robot manipulator. Direct-drive robots are suitable to the position and force control with high accuracy, but it is difficult to design a controller because of the system's nonlinearity and link-interactions. This paper is concerned with the study of the stabilization force control of direct-drive robots. The proposed algorithm is consists of the feedback controllers and the neural networks. After the completion of learning, the outputs of feedback controllers are nearly equal to zero, and the neural networks play an important role in the control system. Therefore, the optimum adjustment of control parameters is unnecessary. In other words, the proposed algorithm does not need any knowledge of the controlled system in advance. The effectiveness of the proposed algorithm is demonstrated by the experiment on the force control of a parallelogram link-type robot.

Precision Stabilization Control of Servo-system by Using Friction Compensation (마찰보상을 통한 서어보제어계의 정밀 안정화 제어)

  • Kang, Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.109-115
    • /
    • 1999
  • This paper presents a stabilization control designed to improve position stabilization performance of a position servo-system(turret) mounted on a manuvering platform(vehicle). In the consideration of the motion of the platform, a dynamic model of the stabilization system is derived and shows the viscous and stick-slip friction torques are the major source of stabilization errors. An extended generalized minimum variance control which consists of a feedforward disturbance compensation as well as a pole placement feedback control is suggested to reduce the stabilization errors caused from the friction disturbances. This modeling and control are applied to a small experimental set-up and the experimental results confirm the accuracy of the model and the effectiveness of the suggested control.

  • PDF

A Sensorless Speed Control of 2-Phase Asymmetric SRM with Parameter Compensator (파라미터 보상기를 가지는 비대칭 SRM의 센서리스 속도제어)

  • Lim, Geun-Min;Ahn, Jin-Woo;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.238-245
    • /
    • 2012
  • This paper presents a sensorless speed control of a 2-phase switch reluctance motor(SRM). The proposed sensorless control scheme is based on the slide mode observer with parameter compensator to improve the estimation performance. In the stand still position, the initial rotor position is determined by pulse current responses of each phase windings and the current difference. In order to determine an accurate initial rotor position, the two initial rotor positions are estimated by the difference of the pulse currents. From the stand still to the operating region, a simple open loop control which determines the commutation sequence by the pulse current of the unexcited phase winding is used. When the motor speed is reached to the sensorless control region, the estimated rotor position and speed by the slide mode observer are used to control the SRM. The flux calculator used in the slide mode observer is designed by phase voltage and the voltage drops in the phase resistance of the winding. The accuracy of the flux calculator is dependent on the phase resistance. For the continuous update of the phase resistance, current gradient at the inductance break point is used in this paper. The error of the estimated rotor position at the current gradient position is used to update the phase resistance to improve the sensorless scheme. The proposed sensorless speed control scheme is verified with a practical compressor used in home appliances. And the results show the effectiveness of the proposed control scheme.

Laparoscope Manipulator Control for Minimally Invasive Surgery (최소침습수술을 위한 복강경 매니퓰레이터 제어)

  • Kim, Soo-Hyun;Kim, Kwang-Gi;Jo, Yung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.685-696
    • /
    • 2011
  • An efficient laparoscope manipulator robot was designed to automatically control the position of laparoscope via a passive joint on end-effector position. The end position of the manipulator is controlled to have corresponding velocity defined in the global coordinate space using laparoscopic visual information. Desired spatial position of laparoscope was derived from detected positions of surgical instrument tips, then the clinical viewing plane was moved by visual servoing task. The laparoscope manipulator is advantageous for automatically maintaining clinically important views in the laparoscopic image without any additional operator. A laparoscope is mounted to a holder which is linked to four degree of freedom manipulator via universal joint-type passive rings connection. No change in the design of laparoscope or manipulator is necessary for its application to surgery assistant robot system. Expanded working space and surgical efficiency were accomplished by implementing slant linking structure between laparoscope and manipulator. To ensure reliable positioning accuracy and controllability, the motion of laparoscope in an abdominal space through trocar was inspected using geometrical analysis. A designed laparoscope manipulating robot system can be easily set up and controlled in an operation room since it has a few subsidiary devices such as a laparoscope light source regulator, a control PC, and a power supply.

Autonomous Sensor Center Position Calibration with Linear Laser-Vision Sensor

  • Jeong, Jeong-Woo;Kang, Hee-Jun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.43-48
    • /
    • 2003
  • A linear laser-vision sensor called ‘Perception TriCam Contour' is mounted on an industrial robot and often used for various application of the robot such as the position correction and the inspection of a part. In this paper, a sensor center position calibration is presented for the most accurate use of the robot-Perceptron system. The obtained algorithm is suitable for on-site calibration in an industrial application environment. The calibration algorithm requires the joint sensor readings, and the Perceptron sensor measurements on a specially devised jig which is essential for this calibration process. The algorithm is implemented on the Hyundai 7602 AP robot, and Perceptron's measurement accuracy is increased up to less than 1.4mm.

Localization of a Mobile Robot Using Multiple Ceiling Lights (여러 개의 조명등을 이용한 이동 로봇의 위치 추정)

  • Han, Yeon-Ju;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.379-384
    • /
    • 2013
  • We propose a new global positioning method for the indoor mobile robots. The multiple indoor lights fixed in ceiling are used as the landmarks of positioning system. The ceiling images are acquired by the fisheye lens camera mounted on the moving robot. The position and orientation of the lights are extracted by binarization and labeling techniques. Also the boundary lines between ceiling and walls are extracted to identify the order of each light. The robot position is then calculated from the extracted position and known position of the lights. The proposed system can increase the accuracy and reduce the computation time comparing with the other positioning methods using natural landmark. Experimental results are presented to show the performance of the method.

3-D position estimation for eye-in-hand robot vision

  • Jang, Won;Kim, Kyung-Jin;Chung, Myung-Jin;ZeungnamBien
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.832-836
    • /
    • 1988
  • "Motion Stereo" is quite useful for visual guidance of the robot, but most range finding algorithms of motion stereo have suffered from poor accuracy due to the quantization noise and measurement error. In this paper, 3-D position estimation and refinement scheme is proposed, and its performance is discussed. The main concept of the approach is to consider the entire frame sequence at the same time rather than to consider the sequence as a pair of images. The experiments using real images have been performed under following conditions : hand-held camera, static object. The result demonstrate that the proposed nonlinear least-square estimation scheme provides reliable and fairly accurate 3-D position information for vision-based position control of robot. of robot.

  • PDF

Vision based MLGA Chip Mounting System (Vision을 이용한 MLGA Chip 장착시스템 개발)

  • No, Byeong-Ok;Yu, Yeong-Gi;Kim, An-Sik;Kim, Yeong-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.161-167
    • /
    • 2001
  • In this study, the control of mounting system for MLGA package was developed using machine vision for the control of rotation position compensation and mounting position of X-Y table. Two types of materials, polymer and alumina, were used for the dielectric insulator of the MLGA. The illumination system and the algorithm of position compensation which is suitable for these materials was developed. We found that the mounting accuracy enough to the degree of${\pm}10{\mu}m$ when MLGA was mounted on the PCB.

  • PDF

유압 위치제어 시스템의 단속적 제어방법에 관한 연구 I

  • 장효환;안병홍;이춘호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.465-472
    • /
    • 1987
  • Two kinds of discontinuous control methods i, e., simple on-off(SOF) control and pulsating on-off(POF) control methods are implemented and compared each other for a low cast hydraulic position-control system which utilizes a solenoid-operated directional valve instead of a servovalve. Experimental work was carried out to investigate effects of control parameters and loading conditions on step response characteristics of the system for each control method. The results show that much higher accuracy and much better transient response characteristics can be achieved by POF controller than those by SOF controller. The results may be used as basic data in the selection of control parameters as well as in the design of the hydraulic position-control system.

A novel hybrid type encoder design for the position control with the high-resolution

  • Kim, Jong-Kwon;Park, Sung-Jun;Cho, Kyeum-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1216-1219
    • /
    • 2003
  • The position control is very important in semiconductor manufacturing devices, precision machining tools, precision measuring instruments, etc. The accuracy of measurement for the distance in these devices affect on the performance of the whole devices. Therefore, in those precision instruments, a sensing device that can measure the distance of movement with high-precision resolution is required. In this paper, a novel hybrid (digital and analog) type encoder is proposed. It is shown that from several experiments, a high-resolution angular position measurement device can be designed with a low cost incremental encoder and a DSP controller.

  • PDF