• Title/Summary/Keyword: Position Variation

Search Result 1,186, Processing Time 0.042 seconds

A STUDY OF OCCLUSAL CONTACT VARIATON DUE TO CHANGE IN EACH HEAD POSITION IN NORMAL OCCLUSION (정상교합인의 두부위치변화에 따른 교합접촉점의 변화에 관한 연구)

  • Choi, Hee-Cheol;Lee, Sung-Bok;Choi, Dae-Gyun;Park, Nam-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.769-779
    • /
    • 1995
  • The understanding the nature of occlusal tooth contacts of natural dentition is important for correct diagnosis and treatment of diseases developed in stomatognatic system. Several investigator have studied the distribution of tooth contacts in maximum intercuspation and have repored contact locations with respect to the tooth position. However, there are few report the variation of the occlusal contact point with change in each head position. This study analysed the number of occlusal contact point with change in each head position. 30 subject(male 17, female 13), who ahad natural occlusion and no symptoms of temporomandibular disorder, were selected. The numbers and patterns of tooth contact were recorded by silicone bite registration on stone model at four different head positions with head anguration gauge(from the supine to the upright position). The results obtained were as follows : 1. The numbers of total occlusal contact point on teeth increased to average 25, 29, 35, 42 points as head angulation was changed from the supine to the upright position against the ala-tragus line, and there was significant difference(P<0.05). 2. In the 19 subject(65%)of total 30 subject, the perforated point of the silicone bite indicated that the locus for the prime contact point moved mesially as the head angulation was changed from the supine to the upright position. 3. On the basis of the fact that the anterior occlusal contact point increase as head angulation changed from the supine to the upright position, we could find that the mandibular position is moved anteriorly.

  • PDF

Analysis of influence of parameter error for extended EMF based sensorless control and flux based sensorless control of PM synchronous motor (영구자석 동기전동기의 확장 역기전력 기반 센서리스 제어와 자속기반 센서리스 제어의 파라미터 오차의 영향 분석)

  • Park, Wan-Seo;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.8-15
    • /
    • 2019
  • The PM synchronous motor drives with vector control have been applied to wide fields of industry applications due to its high efficiency. The rotor position information for vector control of a PM synchronous motor is detected from the rotor position sensors or rotor position estimators. The sensorless control based on the mathematical model of PM synchronous motor is generally used and it can be classified into back EMF -based sensorless control and magnet flux-based sensorless control. The rotor position estimating performance of the back EMF-based sensorless control is deteriorated at low speeds since the magnitude of back EMF is proportional to the motor speed. The magnitude of the magnet flux for estimating rotor position in the flux-based sensorless control is independent on the motor speed so that the estimating performance is excellent for wide speed ranges. However, the estimation performance of the model-based sensorless control may be influenced by the motor parameter variation since the rotor position estimator uses the mathematical model of the PM synchronous motor. In this paper, the rotor position estimation performance for the back EMF based- and flux-based sensorless controls is analyzed theoretically and is compared through the simulation and experiment when the motor parameters including stator resistance and inductance are varied.

A Design of Fuzzy-Neural Network Controller of Wheeled-Mobile Robot for Path-Tracking (구륜 이동 로봇의 경로 추적을 위한 퍼지-신경망 제어기 설계)

  • Park Chongkug;Kim Sangwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1241-1248
    • /
    • 2004
  • A controller of wheeled mobile robot(WMR) based on Lyapunov theory is designed and a Fuzzy-Neural Network algorithm is applied to this system to adjust controller gain. In conventional controller of WMR that adopts fixed controller gain, controller can not pursuit trajectory perfectly when initial condition of system is changed. Moreover, acquisition of optimal value of controller gain due to variation of initial condition is not easy because it can be get through lots of try and error process. To solve such problem, a Fuzzy-Neural Network algorithm is proposed. The Fuzzy logic adjusts gains to act up to position error and position error rate. And, the Neural Network algorithm optimizes gains according to initial position and initial direction. Computer simulation shows that the proposed Fuzzy-Neural Network controller is effective.

Study on the I-PD Position Controller Design for Step Motor Drives

  • Yoshida, Ryo;Hirata, Yoshinori;Ochiai, Yasuzumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.536-539
    • /
    • 2004
  • In this paper, a brief discussion on I-PD position controller design for step motor drive is presented. The proposed method mainly focuses on the robustness property of the controller, which is very important for this type of system in which the variation of external load affects plant parameters. It is considered in this paper that two types of controller design methods namely; Coefficient Diagram Method (CDM), and arbitrary Pole Assignment Method (PAM) are treated and compared them. The control plant chosen for our study is a SM inherently is comprised of some non-linear elements. A the scope of the design method is limited to only linear time invariant systems, the SM modeling is approximated to linear system.

  • PDF

A Research for Novel Brushless Direct Current Motor Position Senseless Drive Using Single Current Sensor (단일전류센서를 이용한 브러시리스 직류 전동기의 새로운 센서리스 제어에 관한 연구)

  • Kim, Byung-Bok;Jang, Jae-Wan;Jang, Ki-Bong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.141-143
    • /
    • 2003
  • This paper proposes a new sensorless drive system for the trapezoidal Brushless Direct Current (BLDC) motor requiring mechanical position or speed sensor. The proposed method is using only one current sensor For this an indirect rotor position sensing method from the periodically variation DC Link current waveform. DC Link current waveform change from high to low when BLDC commutate status. This algorithm was verified by simulations using MATLAB SIMULINK and experiment.

  • PDF

A Study of Obscuration on Height of Air Supply in Indoor Fire (옥내화재시 급기구의 높이에 따른 암흑화에 관한 연구)

  • 이창섭
    • Fire Science and Engineering
    • /
    • v.15 no.3
    • /
    • pp.1-6
    • /
    • 2001
  • This paper examined the variation in obscuration with height at indoor fire. The experiments were performed using a smoke box which is made for this job. It was found that the degree of smoke obscuration is depending upon the height. The obscurity at low position is less than that of high position. But there exist the deviation of obscurity at the position of air supply height.

  • PDF

Nonlinear Feedforward Compensation of BLDDM Position Control using Neural Network (신경회로망을 이용한 직접구동용 브러쉬없는 전동기 위치 추종 제어 시스템의 비선형 전향 보상)

  • Kim, Kyeong-Hwa;Lee, Jung-Hoon;Ko, Jong-Sun;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.294-297
    • /
    • 1994
  • A robust position tracking controller of the BLDDM sensitive to the load torque disturbance and inertia variation is constructed It is consisted of the linear feedback controller and the nonlinear feedforward compensator using the neural network. With effietive feedforward compensation of neural network, the robust position control can be obtained, which is verified by computer simulations.

  • PDF

A Study on Pull Cord Switch System with Position Sensing Function (위치인식이 가능한 Pull Cord 스위치 시스템에 대한 연구)

  • 최남섭
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.556-559
    • /
    • 2003
  • This paper presents a study on pull cord switch system which is employed in various industry for emergency stop of the equipments. In this paper, a new method for operation position detection of pull cord switch is suggested which is based on sensing operation position by detecting input resistance variation due to switching operation of pull cord switches with respective ohmic resisters. Moreover, this paper proposes a resistor circuit structure in order to improve recognition rates. Finally, this paper treats a system where such operating switches can be read by PLC.

  • PDF

Sensorless Control of PMSM by using MRAS Method (MRAS 방식을 이용한 PMSM 센서리스 제어)

  • Joo, Kyoung-Jin;Kim, Jong-Moo;Ahn, Ho-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1011_1012
    • /
    • 2009
  • Low costed position sensor or sensorless control method is generally used in the motor control for home appliance because of the material cost and manufacture standard restriction. In conventional sensorless method, the stator resistance and back-EMF coefficient are varied by the motor speed and load torque variation. Therefore, position error occurred when the motor is operated by sensorless control method because of these variations. In this paper, the compensation method is proposed for sensorless position error using the MRAS method and compared with the other sensorless control method.

  • PDF

Adaptive Vibration Control of Flexible One-Lind Manipulator (유연한 단일링크 조작기의 적응진동제어)

  • 박영욱;김재원;박영필
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.385-394
    • /
    • 1995
  • Recently, since robot manipulator becomes faster and lighter, its link is no longer regarded as rigid body, and robot controller which only controls robot position cannot reduce vibration of the flexible link. Therefore vibration control is needed in robot manipulator control in addition to position control. In the case that tip mass changes when robot manipulator in working, it is clear that the efficiency of the vibration/position controller designed for the fixed system goes down. In this paper, the system with time varying parameters, adaptive control theory is adopted which estimates parameters changed by the variation of the tip mass and re-calculates the gain of the controller. Validify of the proposed adaptive controller and capability of the estimator are evaluated by computer simulations and experiments. Comparison results of the optimal controller for the fixed system and proposed adaptive controller and carried out.

  • PDF