• Title/Summary/Keyword: Position Synchronization

Search Result 133, Processing Time 0.024 seconds

Parallel Sensorless Speed Control using Power Angle for Dual SPMSMs Fed by a Single Inverter (단일 인버터 기반 두 대의 영구자석 동기전동기 병렬운전에서 전력각을 이용한 속도제어기법)

  • Kim, Kyung-Hoon;Yun, Chul;Kwon, Woo-Hyen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1481-1487
    • /
    • 2017
  • This paper proposes a sensorless speed control algorithm for parallel-connected dual Surface-mounted Permanent Magnet Synchronous Motors fed by a single inverter. For stable parallel operation of synchronous motors with a single inverter, each motor has to be constantly kept in the synchronization state regardless of load torque. If the master motor with the larger load is controlled, the synchronous state will be maintained. Therefore, detection of the master motor is essential. Conventionally, the master motor is determined by comparing the rotor position error from the relation between the back-EMF for torque angle and the flux position. consequently, the position sensor is deemed essential for finding the rotor position. In this paper, we proposed a method that decides the magnitude of the load from the power angle of two motors due to the load variation and selects the motor to control through the sign function for the sensorless speed control without the position sensor. The results of simulation and experiment conducted verify the efficacy of the proposed method.

High precision position synchronous control in a multi-axes driving system (II) (다축 구동 시스템의 정밀 위치동기 제어(II))

  • 양주호;변정환;김영복;정석권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.98-106
    • /
    • 1997
  • In this paper, a new method of position synchronizing control is proposed for multi-axes driving system. The proposed position synchronizing control system is constituted with speed and synchronizing controller. The speed controller is aimed at the following to speed reference. Furthermore, it is designed to guarantee low sensitivity under some disturbance as well as robustness against model uncertainties using $H_{\infty}$technique. The synchronizing controller is designed to keep minimizing the position error using PID control law which is considered to reduce the dimension of transfer function in the control system. Especially, the proposed method can be easily conducted by controlling only slave axis speed, because it, has variable structure which is decided to master and slave axis by the sign of synchronizing error. Therfore, the master axis which is smaller influenced than another axes by disturbance can be controlled without reducing or increasing its speed for precise position synchronization. The effectiveness of the proposed method is sucessfully confirmed through many experiments.s.

  • PDF

Parallel Sensorless Speed Control using Flux-axis Current for Dual SPMSMs Fed by a Single Inverter

  • Kim, Chang-Bum;Yun, Chul;Yoon, Byung-Keun;Cho, Nae-Soo;Kwon, Woo-Hyen
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1048-1057
    • /
    • 2015
  • This paper proposes a sensorless speed control algorithm for parallel-connected dual Surface-mounted Permanent Magnet Synchronous Motors (SPMSMs) fed by a single inverter. For stable parallel operation of synchronous motors with a single inverter, each motor has to be constantly kept in the synchronization state regardless of load torque. If the master motor with the larger load is controlled, the synchronous state will be maintained. Therefore, detection of the master motor is essential. Conventionally, the master motor is determined by comparing the rotor position error from the relation between the back-EMF for torque angle and the flux position; consequently, the position sensor is deemed essential for finding the rotor position. The parallel sensorless speed control method proposed in this paper uses no position sensor, instead it compares the flux-axis current from the connection between the back-EMF for torque angle and current in unbalanced load conditions. The results of simulation and experiment conducted verify the efficacy of the proposed method.

Frame Synchronization Algorithm based on Differential Correlation for Burst OFDM System (Burst OFDM 시스템을 위한 차동 상관 기반의 프레임 동기 알고리즘)

  • Um Jung-Sun;Do Joo-Hyun;Kim Min-Gu;Choi Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10C
    • /
    • pp.1017-1026
    • /
    • 2005
  • In burst OFDM system, the frame synchronization should be performed first for the acquisition of received frame and the estimation of the correct FFT-window position. The conventional frame synchronization algorithms using design features of the preamble symbol, the repetition pattern of the OFDM symbol by pilot sub-carrier allocation rule and Cyclic Prefix(CP), has difficulty in the detection of precise frame timing because its correlation characteristics would increase and decrease gradually. Also, the algorithm based on the correlation between the reference signal and the received signal has performance degradation due to frequency offset. Therefore, we adopt a differential correlation method that is robust to frequency offset and has the clear peak value at the correct frame timing for frame synchronization. However, performance improvement is essential for differential correlation methods, since it usually shows multiple peak values due to the repetition pattern. In this paper, we propose an enhanced frame synchronization algorithm based on the differential correlation method that shows a clear single peak value by using differential correlation between samples of identical repeating pattern. We also introduce a normalization scheme which normalizes the result of differential correlation with signal power to reduce the frame timing error in the high speed mobile channel environments.

RTK Latency Estimation and Compensation Method for Vehicle Navigation System

  • Jang, Woo-Jin;Park, Chansik;Kim, Min;Lee, Seokwon;Cho, Min-Gyou
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.1
    • /
    • pp.17-26
    • /
    • 2017
  • Latency occurs in RTK, where the measured position actually outputs past position when compared to the measured time. This latency has an adverse effect on the navigation accuracy. In the present study, a system that estimates the latency of RTK and compensates the position error induced by the latency was implemented. To estimate the latency, the speed obtained from an odometer and the speed calculated from the position change of RTK were used. The latency was estimated with a modified correlator where the speed from odometer is shifted by a sample until to find best fit with speed from RTK. To compensate the position error induced by the latency, the current position was calculated from the speed and heading of RTK. To evaluate the performance of the implemented method, the data obtained from an actual vehicle was applied to the implemented system. The results of the experiment showed that the latency could be estimated with an error of less than 12 ms. The minimum data acquisition time for the stable estimation of the latency was up to 55 seconds. In addition, when the position was compensated based on the estimated latency, the position error decreased by at least 53.6% compared with that before the compensation.

Control of Convergence for Deflection Yoke Using Neuro-Fuzzy Model (뉴로 퍼지 모델을 이용한 편향요크의 RGB색 일치에 대한 제어)

  • 정병묵;임윤규;정창욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.19-27
    • /
    • 1998
  • Color Display Tube (CDT) used in computer monitors, consists of many components. Deflection Yoke(DY) among them supplies the vertical and horizontal magnetic fields so that the spatial trajectories of electron beams are deflected according to the synchronization signals. If the magnetic fields are not correctly formed, there will be color blurring or blooming by a mis-convergence of each beam and the color image on screen may not be clear. Therefore, in the manufacture of DY. its quality is strictly examined to get the desired convergence and the occurred mis-convergence can be cured by sticking ferrite sheets on the inner part of DY. However, because it needs expert's knowledge and experience to find the proper position of the sheet, this article introduces an intelligent controller that the knowledge-base represented by a neuro-fuzzy model is used to find the optimal position of the ferrite sheet for the convergence.

  • PDF

Measurement Delay Error Compensation for GPS/INS Integrated Systems

  • Lim, You-chol;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.33.1-33
    • /
    • 2002
  • The INS provides high rate position, velocity and attitude data with good short-term stability while the GPS provides position and velocity data with long-term stability. By integrating the INS with GPS, a navigation system can be achieved to provide highly accurate navigation performance. For the best performance, time synchronization of GPS and INS data is very important in GPS/INS integrated system. But, it is impossible to synchronize them exactly due to the communication and computation time-delay. In this paper, to reduce the error caused by the measurement time-delay in GPS/INS integrated systems, error compensation methods using separate bias Kalman filter are suggested for both the...

  • PDF

Magnetic Levitation Control of the Horizontally-Movable Metal Ball (수평방향 이동이 가능한 금속구의 자기부상 제어)

  • Hamm, Gil;Rhee, Hui-Nam;Lee, Sang-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.438-439
    • /
    • 2011
  • Magnetic levitation control system of a metal ball was designed using combined PID and fuzzy logic, in which two electromagnets are used to control the vertical and horizontal position of the ball. Single synchronization coil sensor was used to detect the vertical position. Electric power is differentially supplied to two electromagnets so that the ball can move horizontally. In the experiment 25 cm diameter metal ball was levitated and successfully controlled to move horizontally.

  • PDF

Synchronous Control of a Two-Axes Driving System by Disturbance Observer (외란 관측기를 이용한 2축 구동 시스템의 동기제어)

  • Byeon, Jeong-Hwan;Yeo, Dong-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.242-249
    • /
    • 2001
  • In this study, a methodology of synchronous control has been developed that can is applied to position synchronization of a two-axes driving system such as overhead crane. The synchronous error is caused by model uncertainties and torque load at each axis. To overcome these problems, the synchronous control system has been composed of two disturbance observers to calculate the torque disturbance and one synchronous controller to eliminate synchronous error. By considering model uncertainties of each axis, the synchronous controller has been designed using H(sub)$\infty$ control theory. The effectiveness of the proposed method has been verified through simulation.

Developing Head/Eye Tracking System and Sync Verification (헤드/아이 통합 트랙커 개발 및 통합 성능 검증)

  • Kim, Jeong-Ho;Lee, Dae-Woo;Heo, Se-Jong;Park, Chan-Gook;Baek, Kwang-Yul;Bang, Hyo-Choong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.90-95
    • /
    • 2010
  • This paper describes the development of integrated head and eye tracker system. Vision based head tracker is performed and it has 7mm error in 300mm translation. The epi-polar method and point matching are used for determining a position of head and rotational degree. High brightness LEDs are installed on helmet and the installed pattern is very important to match the points of stereo system. Eye tracker also uses LED for constant illumination. A Position of gazed object(3m distance) is determined by pupil tracking and eye tracker has 1~5 pixel error. Integration of result data of each tracking system is important. RS-232C communication is applied to integrated system and triggering signal is used for synchronization.