• Title/Summary/Keyword: Position Synchronization

Search Result 133, Processing Time 0.022 seconds

Performance Evaluation of PBCH Detection of LTE-Based 5G MBMS and 5G NR for Cellular Broadcast (셀룰러 방송을 위한 LTE 기반 5G MBMS와 5G NR의 PBCH 검출 성능 평가)

  • Ahn, Haesung;Kim, Hyeongseok;Cha, Eunyoung;Kim, Jeongchang;Ahn, Seok-Ki;Kwon, Sunhyoung;Park, Sung-Ik;Hur, Namho
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.766-777
    • /
    • 2021
  • This paper presents an improved scheme for detection of the physical broadcast channel (PBCH) in long-term evolution (LTE)-based fifth-generation (5G) multimedia broadcast and multicast services (MBMS) and 5G new radio (NR) for cellular broadcast. In the time domain, by combining the correlations between the received signal and primary synchronization signal (PSS) within all SS/PBCH blocks, the frame synchronization and the start position of the SS/PBCH blocks can be obtained. In this paper, to improve the detection performance of PBCH for 5G NR, a combining scheme of PBCH signals within a frame is proposed. In addition, the performance of the proposed detection scheme is evaluated and the performance is compared with the conventional scheme for PBCH detection of LTE-based 5G MBMS. The simulation results show that the detection performance of PBCH for 5G NR is improved by combining the PBCH signals and outperforms LTE-based 5G MBMS under the additive white Gaussian noise (AWGN), fixed, and mobile environments.

Measurement Delay Error Compensation for GPS/INS Integrated System (GPS/INS 통합시스템의 측정치 시간지연오차 보상)

  • Lyou Joon;Lim You-Chol
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • The INS(Inertial Navigation System) provides high rate position, velocity and attitude data with good short-term stability while the GPS(Global Position System) provides position and velocity data with long-term stability. By integrating the INS with GPS, a navigation system can be achieved to Provide highly accurate navigation Performance. For the best performance, time synchronization of GPS and INS data is very important in GPS/INS integrated system But, it is impossible to synchronize them exactly due to the communication and computation time-delay. In this paper, to reduce the error caused by the measurement time-delay in GPS/INS integrated systems, error compensation methods using separate bias Kalman filter are suggested for both the loosely-coupled and the tightly-coupled GPS/INS integration systems. Linearized error models for the position and velocity matching GPS/INS integrated systems are Int derived by linearizing with respect to its time-delay and augmenting the delay-state into the conventional state equations for each case. And then separate bias Kalman Inter is introduced to estimate the time-delay during only initial navigation stage. The simulation results show that the present method is effective enough resulting in considerably less position error.

Development of Highway Photologging Vehicle for the Highway Management System (도로관리통합시스템을 위한 도로영상수집차량개발)

  • Jeong Dong-Hoon;Sung Jung-Gon
    • Spatial Information Research
    • /
    • v.13 no.3 s.34
    • /
    • pp.211-220
    • /
    • 2005
  • To understand present road state quickly and correctly, The Ministry of Construction and Transportation pushing on with their plan that they offer digital images to user with position information in the HMS(Highway Management System). For that plan, the Korea Institute of Construction Technology developed a highway photologging vehicle which could acquire two high resolution color CCD images with fixed distance on the way to run. In this paper, especially, development of image aquisition S/W and synchronization device are described. And also their performance and trajectory accuracy are investigated together. As a result, it could be hon that the newly developed highway photologging vehicle is suitable to the road image acquisition work far the HMS.

  • PDF

A Study of a RealTime OS Based Motor Control System for Laparoscopic Surgery Robot (실시간 운영체제 기반의 복강경 수술 로봇의 모터제어 시스템에 관한 연구)

  • Song, Seung-Joon;Kim, Yong;Choi, Jae-Soon;Bae, Jin-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.218-221
    • /
    • 2006
  • This paper reports on a Realtime OS based motor control system for laparoscopic surgery robot which enables telesurgery and overcomes shortcomings with conventional laparoscopic surgery. The system has a conventional master-slave robot configuration and the control system consists of joint controllers, host controllers, and power units. The robot features (1) a compact slave robot with 5 DOF (Degree Of Freedom) expanding the workspace of each tool and increasing the number of tools operating simultaneously, and (2) direct 1:1 correspondence in the joint of master and slave robot that simplifies control algorithm and enhances reliability. Each master, slave and GUI (Graphical User Interface) host has a dedicated RTOS (RealTime OS), RTLinux-Pro (FSMLabs Inc., U.S.A.) Each master and slave controller set pair has a dedicated CAN (Controller Area Network) channel for control and monitoring signal communication. Total 4 pairs of the master/slave manipulators as current are monitored by one host controller for operation monitoring and higher level motion control. The system showed acceptable performance in both position control precision and master-slave motion synchronization and is now under further development for better safety and control fidelity for clinically applicable prototype.

  • PDF

Evoked Potential Estimation using the Iterated Bispectrum and Correlation Analysis (Bispectrum 및 Correlation 을 이용한 뇌유발전위 검출)

  • Han, S.W.;Ahn, C.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.113-116
    • /
    • 1994
  • Estimation of the evoked potential using the iterated bispectrum and cross-correlation (IBC) has been tried for both simulation and real clinical data. Conventional time average (TA) method suffers from synchronization error when the latency time of the evoked potential is random, which results in poor SNR distortion in the estimation of EP waveform. Instead of EP signal average in time domain, bispectrum is used which is insensitive to time delay. The EP signal is recovered by the inverse transform of the Fourier amplitude and phase obtained from the bispectrum. The distribution of the latency time is calculated using cross-correlation between EP signal estimated by the bispectrum and the acquired signal. For the simulation. EEG noise was added to the known EP signal and the EP signal was estimated by both the conventional technique and bispectrum technique. The proposed bispectrum technique estimates EP signal more accurately than the conventional technique with respect to the maximum amplitude of a signal, full width at half maximum(FWHM). signal-to-noise-ratio, and the position of maximum peak. When applied to the real visual evoked potential(VEP) signal. bispectrum technique was able to estimate EP signal more distinctively. The distribution of the latency time may play an important role in medical diagonosis.

  • PDF

A Multistage In-flight Alignment with No Initial Attitude References for Strapdown Inertial Navigation Systems

  • Hong, WoonSeon;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.565-573
    • /
    • 2017
  • This paper presents a multistage in-flight alignment (MIFA) method for a strapdown inertial navigation system (SDINS) suitable for moving vehicles with no initial attitude references. A SDINS mounted on a moving vehicle frequently loses attitude information for many reasons, and it makes solving navigation equations impossible because the true motion is coupled with an undefined vehicle attitude. To determine the attitude in such a situation, MIFA consists of three stages: a coarse horizontal attitude, coarse heading, and fine attitude with adaptive Kalman navigation filter (AKNF) in order. In the coarse horizontal alignment, the pitch and roll are coarsely estimated from the second order damping loop with an input of acceleration differences between the SDINS and GPS. To enhance estimation accuracy, the acceleration is smoothed by a scalar filter to reflect the true dynamics of a vehicle, and the effects of the scalar filter gains are analyzed. Then the coarse heading is determined from the GPS tracking angle and yaw increment of the SDINS. The attitude from these two stages is fed back to the initial values of the AKNF. To reduce the estimated bias errors of inertial sensors, special emphasis is given to the timing synchronization effects for the measurement of AKNF. With various real flight tests using an UH60 helicopter, it is proved that MIFA provides a dramatic position error improvement compared to the conventional gyro compass alignment.

4S-Van: A Prototype Mobile Mapping System for GIS

  • Lee, Seung-Yong;Kim, Seong-Baek;Choi, Ji-Hoon;Lee, Jong-Hun
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.91-97
    • /
    • 2003
  • The design of Graphic Information System(GIS) in various applications is suffering from the difficulty of data acquisition, which is labor-intensive and time consuming. In order to provide the spatial data rapidly and accurately, 4S-Van, a prototype mobile mapping system, has been developed. The 4S-Van consists of 1)Global Positioning System(GPS), Inertial Navigation System(INS) for estimating the geographic position and attitude of the moving van, i.e.,(x, y, z) and the direction of the Van, 2) Charge Coupled Device(CCD) camera and laser scanner for capturing images and for measuring depth from geographic objects, and 3) External Synchronization Device(ESD) and industrial PC for synchronizing data from GPS/INS/CCD camera and for storing the data. In this paper, we present the design and implementation of the proto-Dpe 4S-Van system for spatial data acquisition for various GIS applications.

Improved time delay estimation by adaptive eigenvector decomposition for two noisy acoustic sensors (잡음이 있는 두 음향 센서를 이용한 시간 지연 추정을 위한 향상된 적응 고유벡터 추정 기반 알고리즘)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.499-505
    • /
    • 2018
  • Time delay estimation between two acoustic sensors is widely used in room acoustics and sonar for target position estimation, tracking and synchronization. A cross-correlation based method is representative for the time delay estimation. However, this method does not have enough consideration for the noise added to the receiving acoustic sensors. This paper proposes a new time delay estimation method considering the added noise on the receiver acoustic sensors. From comparing with the existing GCC (Generalized Cross Correlation) method, and adaptive eigen decomposition method, we show that the proposed method outperforms other methods for a colored signal source in the white Gaussian noise condition.

Concept of Synchronized Individuation Based on the Characters in a Movie and a Fairy Tale

  • Moon, Duk-Soo;Bahn, Geon Ho
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.33 no.2
    • /
    • pp.48-54
    • /
    • 2022
  • Objectives: Among adolescent development tasks, being independent of parents is an essential process for emotional and physical separation. There are many conflicts of separation and individuation between parents and adolescents; however, most clinicians explore the process of separation and individuation only from adolescents' perspective. Whether simultaneously or sequentially, separation-individuation occurs between adolescents and parents, respectively. The authors have already introduced the theory of synchronized individuation in a clinical case to explain the concept of this intersubjective phenomena. This study also attempts to prove the synchronized individuation theory through the interaction of characters in a movie and a fairy tale. Methods: The authors present the basis for the theory of synchronized individuation of adolescence through the growing process of Mason Junior, the main character of the movie "Boyhood," and from the process of the separation of a hen, Sprout, and an orphaned duckling in "The hen who dreamed she could fly." Results: Synchronized individuation was developed and observed from Mason, the son's perspective in "Boyhood," and Sprout, the mother's subjective perspective in the story of the hen. Conclusion: Increasing conflict and mutual impact in the relationship between adolescents and parents, ambivalent feelings for separation, selective identification of each other, mutual respect through mutual recognition, and role changes in relationship position were confirmed. Sons and mothers were individualized with synchronization.

Integrity, Orbit Determination and Time Synchronisation Algorithms for Galileo

  • Merino, M.M. Romay;Medel, C. Hernandez;Piedelobo, J.R. Martin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.9-14
    • /
    • 2006
  • Galileo is the European Global Navigation Satellite System, under civilian control, and consists on a constellation of medium Earth orbit satellites and its associated ground infrastructure. Galileo will provide to their users highly accurate global positioning services and their associated integrity information. The elements in charge of the computation of Galileo navigation and integrity information are the OSPF (Orbit Synchronization Processing Facility) and IPF (Integrity Processing Facility), within the Galileo Ground Mission Segment (GMS). Navigation algorithms play a key role in the provision of the Galileo Mission, since they are responsible for computing the essential information the users need to calculate their position: the satellite ephemeris and clock offsets. Such information is generated in the Galileo Ground Mission Segment and broadcast by the satellites within the navigation signal, together with the expected a-priori accuracy (SISA: Signal-In-Space Accuracy), which is the parameter that in fault-free conditions makes the overbounding the predicted ephemeris and clock model errors for the Worst User Location. In parallel, the integrity algorithms of the GMS are responsible of providing a real-time monitoring of the satellite status with timely alarm messages in case of failures. The accuracy of the integrity monitoring system is characterized by the SISMA (Signal In Space Monitoring Accuracy), which is also broadcast to the users through the integrity message.

  • PDF