• Title/Summary/Keyword: Position Servo Control

Search Result 482, Processing Time 0.026 seconds

Study of optimal controller design & experiment to minimize tracking error (추적오차를 최소화 하기위한 최적제어기 설계및 실현화에 관한 연구)

  • 김광태;김재환;김영수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.164-168
    • /
    • 1988
  • This paper utilizes an optimal control law for the accurate tracking servo system design. The devivation of a simple control law implementing microprocessor is made to minimize position and speed error of the controller. The 16 bit microprocessor receives command angular position and calculate the control algorithm for accurate tracking and provides control system gain scheduling to achieve very short settling time. Simulation results and some experimental results of the position controlled tracking using 4.5Kw DC servo motor are shown.

  • PDF

The position control of an AC servo motor using linear hall-effect sensors (리니어 홀-이펙트 센서를 이용한 교류 서보 모터의 위치제어)

  • 박희성;장성수;오성업;성세진
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.315-317
    • /
    • 2003
  • This paper deals with the position control of an AC servo motor using linear hall-effect sensors. The price of these is very low, but it is possible to make position control of motor similar to a control using an encoder. This paper introduces the design of motor using linear hall-effect sensors and shows the results of control.

  • PDF

Servo control of a manipulator and trajectory planning (매니퓨레이터 서보제어와 궤도 계획)

  • 최진태;박상덕
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.135-139
    • /
    • 1990
  • In general, the control of robot arms falls into two board categories (position control and force control). The joint interpolated trajectory schemes generally interpolate the desired joint path by a class of polynomial functions and generate a sequence of time based control set points for the control of a manipulator from a initial location to its destination. A digital position controller was designed and adapted to the industrial balancing manipulator. And also, the joint interpolated trajectory using 3rd order polynomial was generated in this study. The IBM PC used as the main controller and the trajectory planner had enough run-time capabilities. The 8097BH microcontroller is an integral pan of the joint controller which directly controls an axis of motion. The PI servo control system to treat each joint of the robot arm as a independent joint servo mechanism had satisfying performance, and a sequence of time-based intermediate configurations of the manipulator hand showed good continuity and smoothness on position and velocity of the manipulator's joint coordinates along the trajectory.

  • PDF

A study about rotor position estimation enhance using IQ math in DSP (DSP 내의 IQ math를 이용한 회전자 위치 추정 정밀도 향상에 관한 연구)

  • Jang, Joong-Hack;Lee, Kwang-Ho;Hong, Sun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.98-100
    • /
    • 2005
  • DSPs used at motor control are usually fixed point processor. They need scaling because they cannot excute floating point calculation. Scaling for floating point calculation makes the DSP's speed down, complex coding and etc. Therefore the IQ math is adopted. IQ math makes the fixed point processor possible to calculate the floating point math. In addition, IQ math can reduce memory usage and be more faster than that without IQ math. It seems that IQ math is appropriate in motor position control. In comparison of the position calculation between the IQ math, math function and the sine table, the method using IQ math is superior than other methods.

  • PDF

A Study on Position Control of an Electro-Hydraulic Servo System Using High Speed On-Off Valves (고속전자밸브를 사용한 전기유압서보시스템의 위치제어에 관한 연구)

  • 허준영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.369-378
    • /
    • 1999
  • This paper presents position control of an electro-hydraulic servo system whoch is operated by four 2-2way high speed on-off valves with either PWM PID control method or sliding mode control method, The advantages of using high speed on-off valves instead of electo-hydraulic servo valves or electro-hydraulic proportional valves are low price robustness for oil contamination and direct control without a D/A converter. The system consists of load cylinder inertia car potentiometer and external load cylinder. The experiments were carried out under several conditions and the results were compared. As a result the sliding mode method has shown good control performance and the robust and stable positioning of the elector-hydraulic servo system can be achieved accurately.

  • PDF

Intelligent control of pneumatic actuator using MPWM (MPWM을 이용한 공압 실린더의 지능제어)

  • 송인성;표성만;안경관;양순용;이병룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.530-535
    • /
    • 2002
  • Pneumatic control system has been applied to build many industrial automation systems. But most of them are sequence control type because of their low costs, safety, reliability, etc. Pneumatic servo system is rarely applied to real industrial fields because accurate position control is very difficult due to its nonlinearity and compressibility of air. In pneumatic servo control system, a pneumatic servo valve can be applied, But it is very expensive and has no advantage of low cost compared with a common pneumatic system. This paper is concerned with the accurate position control of a rodless pneumatic cylinder using on/off solenoid valve. A novel Intelligent Modified Pulse Width Modulation(MPWM) is newly proposed. The control performance of this pneumatic cylinder depends on the external loads. To overcome this problem, switching of control parameter using artificial neural network is newly proposed, which estimates external loads on rodless pneumatic cylinder using this training neural network. As an underlying controller, a state feedback controller using position, velocity and acceleration is applied in the switching control the system. The effectiveness of the proposed control algorithms are demonstrated through experiments nth various loads.

  • PDF

Model Following Acceleration Control Strategy for the Robustness Control of DC Servo Position Control Systems (직류서보 위치제어시스템의 강인성 제어를 위한 모델추종 가속도제어기법)

  • Park, Young-Jeen;Cha, Min;You, Young-Suk;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.270-273
    • /
    • 1996
  • A scheme of observer-based MFAC(Model Following Acceleration Control) system is proposed for the robustness control of DC servo position control systems. The proposed system is composed of LMFC, variable structure feedback controller, and reduced-order state observer. As the servo motor is controlled by the acceleration command, the total servo system becomes the acceleration control system. Simulation results show that the proposed system have robust properties against parameter variations and external disturbances.

  • PDF

Extended-State-Observer-Based Nonlinear Servo Control of An Electro-Hydrostatic Actuator (전기-정유압 구동기의 확장 상태 관측기 기반 비선형 서보 제어)

  • Jun, Gi Ho;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.61-70
    • /
    • 2017
  • In this study, an extended-state-observer (ESO) based non-linear servo control is introduced for an electro-hydrostatic actuator (EHA). Almost hydraulic systems not only are highly non-linear system that has mismatched uncertainties and external disturbances, but also can not measure some states. ESO that only use an output signal can be used to compensate these uncertainties and estimate unmeasurable states. To improve the position tracking performance, the barrier Lyapunov function (BLF) that can guarantee an output tolerance is introduced for the position tracking error signal of back stepping control procedures. Finally, the proposed servo control is compared with the proportional-integral (PI) control.

Simple Neuro-Controllers for Field-Oriented Induction Motor Servo Drives

  • Fayez F. M.;Sousy, E-I;M. M. Salem
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.28-38
    • /
    • 2004
  • In this paper, the position control of a detuned indirect field oriented control (IFOC) induction motor drive is studied. A proposed Simple-Neuro-Controllers (SNCs) are designed and analyzed to achieve high-dynamic performance both in the position command tracking and load regulation characteristics for robotic applications. The proposed SNCs are trained on-line based on the back propagation algorithm with a modified error function. Four SNCs are developed for position, speed and d-q axes stator currents respectively. Also, a synchronous proportional plus integral-derivative (PI-D) two-degree-of-freedom (2DOF) position controller and PI-D speed controller are designed for an ideal IFOC induction motor drive with the desired dynamic response. The performance of the proposed SNCs and synchronous PI-D 2DOF position controllers for detuned field oriented induction motor servo drive is investigated. Simulation results show that the proposed SNCs controllers provide high-performance dynamic characteristics which are robust with regard to motor parameter variations and external load disturbance. Furthermore, comparing the SNC position controller with the synchronous PI-D 2DOF position controller demonstrates the superiority of the proposed SNCs controllers due to attain a robust control performance for IFOC induction motor servo drive system.

Trajectory Data Generating Method for Higher Speed and Higher Accurate of Mechatronics Servo Systems (메카트로닉스 서보시스템의 고속 고정밀 운전을 위한 궤적 데이터 생성법)

  • Dae Won CHUNG
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.1
    • /
    • pp.50-54
    • /
    • 2004
  • Reference trajectory generation plays a key role in the computer control for accurate position control of machine. Generated trajectories must not only describe the desired tool path accurately, but must also have smooth kinetic profiles in order to maintain higher tracking accuracy, and to avoid exciting the natural modes of the mechanical servo control system. To achieve higher accurate position control, a method of limiting accelerating and decelerating speed data of reference trajectories is proposed to draw the path with an assigned accuracy without any complex operations.