• Title/Summary/Keyword: Position Servo Control

Search Result 482, Processing Time 0.024 seconds

A study on chattering reduction in the position control of D.C servo-motor using sliding mode (슬라이딩 모우드를 이용한 D.C servo-motor의 위치제어에 있어 chattering reduction에 관한 연구)

  • 천희영;박귀태;강대륜
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.580-585
    • /
    • 1986
  • This paper deals with "chattering" problem in variable structure control system. For digital computer control, chattering reduction algorithm in Analog-VSC is extended to Discrete-VSC. The proposed algorithm is applied to position control of D.C Servo Motor by using 6502 .mu.-processor. The improved transient response, as well as a considerable reduction of chattering, is illustrated experimentally.imentally.

  • PDF

A Study on the Position Control of DC servo Motor Usign a Fuzzy Neural Network (퍼지신경망을 이용한 직류서보 모터의 위치 제어에 관한 연구)

  • 설재훈;임영도
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.51-59
    • /
    • 1997
  • In this paper, we perform the position control of a DC servo motor using fuzzy neural controller. We use the Fuzzy controller for the position control, because the Fuzzy controller is designed simpler than other intelligent controller, but it is difficult to design for the triangle membership function format. Therefore we solve the problem using the BP learning method of neural network. The proposed Fuzzy neural network controller has been applied to the position control of various virtual plants. And the DC servo motor position control using the fuzzy neural network controller is performed as a real time experiment.

  • PDF

Implementation of Dual Servoing Using a Linear Motor and a Piezoelectric Actuator (리니어모터 및 압전구동기를 이용한 이중서보의 구현)

  • Ahn, Hyun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.249-252
    • /
    • 2002
  • For a precise position control with the resolution of a micrometer, a dual servo system is constructed using a linear motor and a piezoelectric actuator. The switching mode dual servo algorithm is implemented on a DSP board in which A/D and D/A converters are also mounted. It is shown by the experimental results that the precise position control is performed within a few micrometer of position error by using the dual servo system.

  • PDF

DC Servo Motor Insensitive Position System by Multi-loop Feedback Control (멀티루프 피드백 방식에 의한 직류 서보 모타의 인센서티브 (insensitive) 위치 제어기의 구성)

  • Lee, Kyu-Chan;Won, Jong-Su
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.28-31
    • /
    • 1988
  • This paper proposes a new linear adaptive position controller of DC servo motor. The proposed method can improve the drive performance and rapidly reject the state error caused by both parameter variations and force disturbance. The structure of this adaptive control method is based multiloop feedback control and model reference control. Simulation results are presented to verify the improved response when parameter variations and load disturbance give relatively significant effects to the servo system.

  • PDF

Mathematical Analysis and Simulation Based Survey on Initial Pole Position Estimation of Surface Permanent Magnet Synchronous Motor

  • Kim, Tae-Woong;Wheeler, Patrick;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.499-506
    • /
    • 2009
  • In this paper, the initial pole-position estimation of a surface (non-salient) permanent magnet synchronous motor is mathematically analyzed and surveyed on the basis of simulation analysis, and developed for accurate servo motor drive. This algorithm is well carried out under the full closed-loop position control without any pole sensors and is completely insensitive to any motor parameters. This estimation is based on the principle that the initial pole-position is simply calculated by the reverse trigonometric function using the two feedback currents in the full closed-loop position control. The proposed algorithm consists of the predefined reference position profile, the information of feedback currents, speed, and relative position, and the reverse trigonometric function for the initial-pole position estimation. Comparing with the existing researches, the mathematical analysis is introduced to get a more accurate initial pole-position of the surface permanent magnet motor under the closed-loop position control. It is found that the proposed algorithm can be easily applied in servo drive applications because it satisfies the following user's specifications; accuracy and moving distance.

A Study on the Design of an Educational Robot System -On a Speed and Position Controller of DC Servo Motor- (교육용 로보트의 설계에 관한 연구 -DC써어보모타의 위치 및 속도제어기를 중심으로)

  • 고명삼;권욱현;이장규;이상욱;권순학
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.9
    • /
    • pp.327-339
    • /
    • 1984
  • In this paper we present how to design the software-based speed and position controller of a DC servo drive system for an educational robot. The controller designed by fully digital scheme consists of a CPU, drive unit, encoder pulse coding unit, speed and position detector. The control algirithm of the controller is a hybrid one such that speed control and position control are switched at some instant to get more accuracy. The experimental resusts of the proposed DC servo-controller show good performances for the position and speed control of the proposed educational robot system.

  • PDF

Control of DC Servo Motor using PID Controller Self-Tuning (PID제어기의 자기동조를 이용한 직류 서보전동기의 위치제어)

  • Kim, Gwon-Sub;Lee, Oh-Keol;Kim, Sang-Hyo;Ko, Tai-Eun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1113-1115
    • /
    • 1996
  • The servo system requires faster and more accurate dynamic responses. A new technique for the position control of DC servo motors is presented in this paper. The proposed technique employs a Self Tuning Regulator Proportional Integral Derivative(STR PID) position control systems in order to improve the dynamic performance of a DC servo motor. Recursive -least -squares (RLS) method is used in order to estimate the STR PID coefficients, $K_P$, $K_I$, and $K_D$. In order to consider dynamics such as voltage, angular velocity, and rotor angle, the above method was applied position control system.

  • PDF

JOINT POSITION COMTROL SYSTEM FOR FARA ROBOTS OF SAMSUNG ELECTROICS

  • Kim, Hyo-Kyu;Kim, Dong-Il;Kim, Sungkuwn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.913-916
    • /
    • 1990
  • In this paper, attempts have been made to control AC synchronous servo motor used as actuators of joints of the FARA robot with high dynamic performance and precise positioning. The AC synchronous servo motors used in FARA robots have resolves as position sensors. Resolver to digital converters are used in order to obtain the information of rotor speed and position from resolver outputs. The proposed joint position control system consists of four speed controller and one position controller. Analog methods are used in the position controller, while digital methods are used in the position controller. For precise position control, PID control algorithm and interpolation functions are executed in two 16 bit microprocessors with sampling rate 2ms. Experimental results show that the proposed joint position control system can be effectively applied to industrial robots in order to obtain high dynamic performance and precise positioning. The proposed joint position control system is being used in the control of FARA robots of Samsung Electronics.

  • PDF

A Study on Dynamics Analysis and Position Control of 5 D.O.F. Multi-joint Manipulater for Uncontact Remote Working (원격작업을 위한 5자유도 다관절 매니퓰레이터의 동특성 분석 및 위치제어에 관한 연구)

  • Kim, Hee-Jin;Jang, Gi-Wong;Kim, Seong-Il;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.87-99
    • /
    • 2022
  • We propoes a study on the dynamic characteristics analysis and position control of 5-degree multi-joint manipulators for untact remote working at construction sites and manufacturing plants. The main frame of freedom multi-joint manipulator consists of five elements, boom cylinder, boom cylinder, arm cylinder, bucket cylinder, and rotation joint and link. In addition, the main purpose of the proposed system is to realize the work of the manufacturing process or construction site by remote control. Motion control of the entire system is a servo valve control method by hydraulic servo cylinders for one to four joints, and a servo motor control method is applied for five joints. The reliability of the proposed method was verified through performance experiments by computer simulation.

Designing the high performance electro-hydraulic position controller using 3-port servo valve for heavy and unidirectional load system (대부하 편하중 유압시스템의 3-port 서어보 밸브를 사용한 고속제어기 설계 연구)

  • 김영대;이관섭;정인수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.276-281
    • /
    • 1989
  • Comparison 3-port servo system with 4-port is made to obtain optimal design for heavy and unidirectional hydraulic system, It is concluded that 3-port servo system it more adequate than 4-port for the heavy load system which is usually operated at lower frequencies. High performance electro-hydraulic position controller is designed using 3-port servo valve. It includes dynamic pressure feedback as a inner loop and position feedback as a outer loop.

  • PDF